Stran 1 iz 44 rezultatov
The Al-induced release of organic acid has been suggested as an important mechanism for Al resistance in plants. In this study, the effect of K-252a and abscisic acid (ABA) on the efflux of citrate was investigated in soybean (Glycine max L.) roots. Al initiated citrate efflux from the root apices
Ferric citrate induces ferritin synthesis and accumulation in soybean (Glycine max) cell suspension cultures [Proudhon, Briat & Lescure (1989) Plant Physiol. 90, 586-590]. This iron-induced ferritin has been purified from cells grown for 72 h in the presence of either 100 microM- or 500
Data are presented which demonstrate a citrate cleavage enzyme in the supernatant of a developing soybean (Glycine max L. Merr., var. Harosoy 63) cotyledon homogenate following a 126,000g spin for 2 hours. Activity of the enzyme was observed directly in the supernatant enzyme preparation and in a
Iron transport in soybeans (Glycine max [L] Merr.) and tomatoes (Lycopersicum esculentum) is controlled by factors that are altered manyfold as the plant experiences an iron stress (deficiency). Depending on their response to an Fe stress, plants in this study are classed (a) Fe-inefficient or (b)
Soybean plants, Glycine max (L.) Merrill, in standard solution received 2.5 mum ferric ethylenediamine di(o-hydroxyphenylacetate (FeEDDHA) and 0 to 128 mum phosphorus. Their stem exudates contained: 32 to 52 mum Fe, 120 to 5000 mum P, and 120 to 165 mum citrate. Electrophoresis of exudates with high
Growth chamber studies with soybeans (Glycine max [L.] Merr.) were designed to determine the relative limitations of NO(3) (-), NADH, and nitrate reductase (NR) per se on nitrate metabolism as affected by light and temperature. Three NR enzyme assays (+NO(3) (-)in vivo, -NO(3) (-)in vivo, and in
The tricarboxylic acid (TCA) cycle plays an important role in generating the energy required by bacteroids to fix atmospheric nitrogen. Citrate synthase is the first enzyme that controls the entry of carbon into the TCA cycle. We cloned and determined the nucleotide sequence of the gltA gene that
The aluminum (Al)-induced secretion of citrate has been regarded as an important mechanism for Al resistance in soybean (Glycine max). However, the mechanism of how Al induces citrate secretion remains unclear. In this study, we investigated the regulatory role of plasma membrane H+-ATPase on the
With the increased use of engineered nanomaterials such as ZnO and CeO₂ nanoparticles (NPs), these materials will inevitably be released into the environment, with unknown consequences. In addition, the potential storage of these NPs or their biotransformed products in edible/reproductive organs of
Iron is an important micronutrient in human and plant nutrition. Adequate iron nutrition during crop production is central for assuring appropriate iron concentrations in the harvestable organs, for human food or animal feed. The whole-plant movement of iron involves several processes, including the
This study investigated the dynamic of zinc (Zn) uptake and the root-to-shoot Zn-transport when supplied as ZnSO4 (aq) or Zn-EDTA (aq) in soybean seedlings using in vivo X-ray fluorescence (XRF) and X-ray absorption spectroscopy (XANES). The time-resolved X-ray fluorescence
Chloroplastic (NADP(+)) glyceraldehyde-3-phosphate dehydrogenase (E.C. 1.2.1.9) catalyzes the second reaction in photosynthesis after the fixation of carbon by RuBisCO. Chloroplast-bound (NADP(+)) G3PDH was resolved in soybean by starch gel electrophoresis using L-histidine-citrate buffer (pH 5.7).
Bisphenol A (BPA), a contaminant of emerging concern, can affect plant root growth by changing various physiological processes. Mitochondria are critical organelles that produce energy for growth. However, how BPA affects the function and ultrastructure of mitochondria and then plant root growth
Cambial sap of spruce (Picea abies) proved to be a good source for isolation of cinnamoyl-CoA reductase and cinnamyl alcohol:NADP+ dehydrogenase. Apparently homogeneous enzymes were obtained by a multistep procedure including dye-ligand chromatography and for the reductase also affinity
Both calcium ion (Ca(2+)) and salicylic acid (SA) influence various stress responses in plants. In acidic soils, aluminum (Al) toxicity adversely affects crop yield. In this study, we determined the influences of Ca(2+) and SA on root elongation, Al accumulation, and citrate secretion in soybean