Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

dhurrin/sirek

Povezava se shrani v odložišče
ČlankiKliničnih preskušanjPatenti
Stran 1 iz 63 rezultatov
A major limitation for the utilization of sorghum forage is the production of the cyanogenic glycoside dhurrin in its leaves and stem that may cause the death of cattle feeding on it at the pre-flowering stage. Therefore, we attempted to develop transgenic sorghum plants with reduced levels of

Relationship between contents of leucoanthocyanidin and dhurrin in sorghum leaves.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Flag leaves of 'Colman' forage sorghum (Sorghum bicolor) contain at least 25 times as much leucoanthocyanidin (LAC) and approximately half as much of the cyanogenic glucoside, dhurrin, as do flag leaves of 'White Collier' forage sorghum. Assays of flag leaves from 119 F2 plants and 11 F5 lines from

Dhurrin-6'-glucoside, a cyanogenic diglucoside from Sorghum bicolor.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
A novel cyanogenic diglucoside has been isolated from methanolic extracts of young seedlings of Sorghum bicolor. Its structure was established as dhurrin-6-glucoside from NMR, mass spectrometry and enzymatic hydrolysis data. Compared with dhurrin, which is the major cyanogenic glucoside in sorghum

The in vitro biosynthesis of dhurrin, the cyanogenic glycoside of Sorghum bicolor.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
A microsomal fraction from seedlings of Sorghum bicolor (Linn) Moench has been shown to catalyze the conversion of L-tyrosine to p-hydroxymandelonitrile via p-hydroxyphenylacetaldoxime. This transformation is consistent with the general pathway for cyanogenic glycoside biosynthesis proposed on the
The two multifunctional cytochrome P450 enzymes, CYP79A1 and CYP71E1, involved in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench have been characterized with respect to substrate specificity and cofactor requirements using reconstituted, recombinant enzymes and
The heme thiolate protein cytochrome P450tyr is a multifunctional N-hydroxylase converting L-tyrosine to p-hydroxyphenylacetaldehyde oxime in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (Sibbesen et al. (1995) J. Biol. Chem. 270, 3506-3511). Using a polyclonal antibody
The localization of three monooxygenase (hydroxylase) enzyme systems which occur in dark-grown seedlings of Sorghum bicolor has been studied. Cinnamic acid 4-hydroxylase (CAH) (trans-cinnamate 4-monooxygenase, EC 1.14.13.11), which has been increasingly utilized in plants as a marker for the

Leakage of Dhurrin and p-Hydroxybenzaldehyde from Young Sorghum Shoots Immersed in Various Solvents.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Spectral scanning was used to provide estimates of the leakage of the cyanogenic glucoside, dhurrin (p-hydroxy-[S]-mandelonitrile-beta-d-glucoside), and its metabolite, p-hydroxybenzaldehyde (p-HB), from young light-grown shoots of Atlas sorghum (Sorghum bicolor [L.] Moench) when these shoots were
Studies with purified mesophyll and epidermal protoplasts and bundle sheath strands have shown that the cyanogenic glucoside dhurrin (p-hydroxy-(S)-mandelonitrile-beta-d-glucoside) is localized in the epidermis of sorghum leaves whereas the enzymes involved in its degradation (dhurrin
Novel cyanogenic plants have been generated by the simultaneous expression of the two multifunctional sorghum (Sorghum bicolor [L.] Moench) cytochrome P450 enzymes CYP79A1 and CYP71E1 in tobacco (Nicotiana tabacum cv Xanthi) and Arabidopsis under the regulation of the constitutive 35S promoter.
Two beta-glucosidases exhibiting high specificity for the cyanogenic glucoside dhurrin have been purified to near homogeneity from seedlings of Sorghum bicolor. Dhurrinase 1 was isolated from shoots of seedlings grown in the dark. Dhurrinase 2 was isolated from the green shoots of young seedlings
The important cereal crop Sorghum bicolor (L.) Moench biosynthesize and accumulate the defensive compound dhurrin during development. Previous work has suggested multiple roles for the compound including a function as nitrogen storage/buffer. Crucial for this function is the endogenous turnover of

Presence of the cyanogenic glucoside dhurrin in isolated vacuoles from sorghum.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Large numbers of vacuoles (10(6)-10(7)) have been isolated from Sorghum bicolor protoplasts and analyzed for the cyanogenic glucoside dhurrin. Leaves from light-grown seedlings were incubated for 4 hours in 1.5% cellulysin and 0.5% macerase to yield mesophyll protoplasts which then were recovered by
Localisation of metabolites in sorghum coleoptiles using Raman hyperspectral imaging analysis was compared in wild type plants and mutants that lack cyanogenic glucosides. This novel method allows high spatial resolution in situ localization by detecting functional groups associated with cyanogenic
Genomic gene clusters for the biosynthesis of chemical defence compounds are increasingly identified in plant genomes. We previously reported the independent evolution of biosynthetic gene clusters for cyanogenic glucoside biosynthesis in three plant lineages. Here we report that the gene cluster
Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge