Stran 1 iz 17 rezultatov
We investigated the effects of digalactosyl-diacylglycerol (DGDG) on the organization and thermal stability of thylakoid membranes, using wild-type Arabidopsis thaliana and the DGDG-deficient mutant, dgd1. Circular-dichroism measurements reveal that DGDG-deficiency hampers the formation of the
Compared with wild type, the dgd1 mutant of Arabidopsis thaliana exhibited a lower amount of PSI-related Chl-protein complexes and lower abundance of the PSI-associated polypeptides, PsaA, PsaB, PsaC, PsaL and PsaH, with no changes in the levels of Lhca1-4. Functionally, the dgd1 mutant exhibited a
The galactolipids monogalactosyl and digalactosyl diacylglycerol occur in all higher plants and are the predominant lipid components of chloroplast membranes. They are thought to be of major importance to chloroplast morphology and physiology, although direct experimental evidence is still lacking.
The response of the heat-sensitive dgd1-2 and dgd1-3 Arabidopsis mutants depleted in the galactolipid DGDG to photoinhibition of chloroplasts photosystem II was studied to verify if there is a relationship between heat stress vulnerability due to depletion in DGDG and the susceptibility to
Plants are often submitted, in their natural environment, to various abiotic stresses such as heat stress. However, elevated temperature has a detrimental impact on overall plant growth and development. We have examined the physiological response of the dgd1-2 and dgd1-3 Arabidopsis mutants lacking
Galactolipids constitute the major lipid class in plants. In recent years oxygenated derivatives of galactolipids have been detected. They are discussed as signal molecules during leaf damage, since they accumulate in wounded leaves in high levels. Using different analytical methods such as nuclear
The lipid phase of the thylakoid membrane is mainly composed of the galactolipids mono- and digalactosyl diacylglycerol (MGDG and DGDG, respectively). It has been known since the late 1960s that MGDG can be acylated with a third fatty acid to the galactose head group (acyl-MGDG) in plant leaf
We compared the thylakoid membrane composition and photosynthetic properties of non- and cold-acclimated leaves from the dgd1 mutant (lacking >90% of digalactosyl-diacylglycerol; DGDG) and wild type (WT) Arabidopsis thaliana. In contrast to warm grown plants, cold-acclimated dgd1 leaves recovered
The glycerolipid digalactosyl diacylglycerol (DGDG) is exclusively associated with photosynthetic membranes and thus may play a role in the proper assembly and maintenance of the photosynthetic apparatus. Here we employ a genetic approach based on the dgd1 mutant of Arabidopsis thaliana to
The pho1 mutant of Arabidopsis has been shown to respond to the phosphate deficiency in the leaves by decreasing the amount of phosphatidylglycerol (PG). PG is thought to be of crucial importance for the organization and function of the thylakoid membrane. This prompted us to ask what the
The Arabidopsis has 51 proteins annotated as serine carboxypeptidase-like (SCPL) enzymes. Although biochemical and cellular characterization indicates SCPLs involved in protein turnover or processing, little is known about their roles in plant metabolism. In this study, we identified an
The remodelling of membrane lipids contributes to the tolerance of plants to stresses, such as freezing and deprivation of phosphorus. However, whether and how this remodelling relates to tolerance of PEG-induced osmotic stress has seldom been reported. Thellungiella salsuginea is a popular
Two new oxylipins, arabidopsides C (1) and D (2), were isolated from the aerial parts of Arabidopsis thaliana, and the structures of 1 and 2 were elucidated using spectroscopic data, primarily NMR and MS, and chemical means. Arabidopsides C (1) and D (2) are rare digalactosyl diacylglycerides
During postgerminative seedling establishment, reserves stored during seed filling are mobilized to provide energy and carbon for the growing seedling until autotrophic growth is possible. A plastid isoform of triose phosphate isomerase (pdTPI) plays a crucial role in this transition from
Chloroplasts of plants contain an intricate membrane system, the thylakoids, which harbor the complexes of the photosynthetic machinery. Chloroplasts are confined by two membranes, the inner and outer envelope. The major glycerolipids of chloroplasts are the glycolipids monogalactosyl diacylglycerol