Stran 1 iz 48 rezultatov
Dihydromyricetin (DMY), extracted from the Chinese herbal medicine Ampelopsis grossedentata, possesses antitumor potential in different types of human cancer cells. Hence, its effects on drug resistance and molecular mechanisms in colorectal cancer (CRC) are still unknown. In our present study, we
Ovarian cancer is one of the leading causes of death in gynecological malignancies, and the resistance to chemotherapeutic agents remains a major challenge to successful ovarian cancer chemotherapy. Dihydromyricetin (DHM), a natural flavonoid derived from Ampeopsis Grossdentata, has been widely
The aim of the present study was to determine the anti-proliferative and pro-apoptotic effects of dihydromyricetin (DHM) on the AGS human gastric cancer cells and their underlying mechanisms. The effects of DHM on AGS cells were evaluated by using 3-(4,
Semaphorin 4D (Sema4D) has been involved in cancer progression, the expression of which is associated with the poor clinical outcomes of some cancer patients. Dihydromyricetin (DMY) has antitumor potentials for different types of human cancer cells. However, the pharmacological effects of DMY on
To investigate the effects of dihydromyricetin (DHM) on the migration and invasion of human gastric cancer MKN45 cells and its mechanism and provide experimental basis for the prevention and treatment of gastric cancer with Traditional Chinese Medicine Nonsmall cell lung cancer (NSCLC) is the most common type of lung cancer with a high mortality rate and still remains a therapeutic challenge. A strategy for targeting NSCLC is to identify agents that are effective against NSCLC cells while sparing normal cells. Dihydromyricetin (DHM) is the major
Colorectal cancer (CRC) is the third highest cause of cancer-related death and the main option for prolonged survival is chemotherapeutic intervention. There is increasing interest in dietary intervention using natural agents to enhance the sensitivity of such invasive chemical treatment. In this
Golgi reassembly and stacking protein 65 (GRASP65), which has been involved in cancer progression, is associated with tumor growth and cell apoptosis. Dihydromyricetin (DHM) has demonstrated antitumor activity in different types of human cancers. However, the pharmacological effects of DHM on
The interaction between dihydromyricetin (DMY) with human serum albumin (HSA) under the physiological conditions was investigated by fluorescence spectroscopy, circular dichroism (CD) spectra and UV-visible absorption spectroscopy. In the mechanism discussion it was proved that the fluorescence
OBJECTIVE
To investigate whether Dihydromyricetin (DHM) inhibits cell proliferation and promotes apoptosis by downregulating Notch1 expression.
METHODS
The correlation between Notch1 and Hes1 (a Notch1 target molecule) expression in hepatoma samples was confirmed by qRT-PCR. In addition, MTT assays,
The aim of the present study was to evaluate the antitumor mechanism of dihydromyricetin (DHM). Results showed that DHM significantly inhibited cell viability of HepG2 and Hep3B cells in a dose-dependent manner. DHM induced G2/M cell-cycle arrest in HepG2 and Hep3B cells by altering the expression
Though the advancement of chemotherapy drugs alleviates the progress of cancer, long-term therapy with anticancer agents gradually leads to acquired multidrug resistance (MDR), which limits the survival outcomes in patients. It was shown that dihydromyricetin (DMY) could partly reverse MDR by
Maytenus disticha (Hook F.), belonging to the Celastraceae family, is an evergreen shrub, native of the central southern mountains of Chile. Previous studies demonstrated that the total extract of M. disticha (MD) has an acetylcholinesterase inhibitory activity along with growth
Chemotherapy is an effective weapon in the battle against cancer, but numerous cancer patients are either not sensitive to chemotherapy or develop drug resistance to current chemotherapy regimens. Therefore, an effective chemotherapy mechanism that enhances tumor sensitivity to chemotherapeutics is
Dihydromyricetin (DMY), the main flavonoid component of Ampelopsis grossedentata, possesses pharmacological activities useful for treatment of diseases associated with inflammation and oxidative damage. Because osteoclasts are often involved in chronic low-grade systemic inflammation and oxidative