Slovenian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

dracunculiasis/arabidopsis

Povezava se shrani v odložišče
ČlankiKliničnih preskušanjPatenti
12 rezultatov

The plastidial glucan, water dikinase (GWD) catalyses multiple phosphotransfer reactions.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
The plant genome encodes at least two distinct and evolutionary conserved plastidial starch-related dikinases that phosphorylate a low percentage of glucosyl residues at the starch granule surface. Esterification of starch favours the transition of highly ordered α-glucans to a less ordered state
The genome of Arabidopsis thaliana encodes three glucan, water dikinases. Glucan, water dikinase 1 (GWD1; EC 2.7.9.4) and phosphoglucan, water dikinase (PWD; EC 2.7.9.5) are chloroplastic enzymes, while glucan, water dikinase 2 (GWD2) is cytosolic. Both GWDs and PWD catalyze the addition of

Determination of the starch-phosphorylating enzyme activity in plant extracts.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
For quantification of alpha-glucan, water dikinase (GWD) activity in crude extracts of plant tissues a radio-labeling assay was established that uses soluble starch and (33)P-labeled ATP as phosphate acceptor and donor, respectively. A constant rate of starch labeling was observed only if the ATP

Glucan, Water Dikinase Exerts Little Control over Starch Degradation in Arabidopsis Leaves at Night.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
The first step on the pathway of starch degradation in Arabidopsis (Arabidopsis thaliana) leaves at night is the phosphorylation of starch polymers, catalyzed by glucan, water dikinase (GWD). It has been suggested that GWD is important for the control of starch degradation, because its transcript
Starch phosphorylation catalysed by the alpha-glucan, water dikinases (GWD) has profound effects on starch degradation in plants. The Arabidopsis thaliana genome encodes three isoforms of GWD, two of which are localized in the chloroplast and are involved in the degradation of transient starch. The
The phosphorylation of amylopectin by the glucan, water dikinase (GWD; EC 2.7.9.4) is an essential step within starch metabolism. This is indicated by the starch excess phenotype of GWD-deficient plants, such as the sex1-3 mutant of Arabidopsis (Arabidopsis thaliana). To identify starch-related

Modification of Cassava Root Starch Phosphorylation Enhances Starch Functional Properties.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Cassava (Manihot esculenta Crantz) is a root crop used as a foodstuff and as a starch source in industry. Starch functional properties are influenced by many structural features including the relative amounts of the two glucan polymers amylopectin and amylose, the branched structure of amylopectin,
An Arabidopsis thaliana gene encoding a homologue of the potato alpha-glucan, water dikinase GWD, previously known as R1, was identified by screening the Arabidopsis genome and named AtGWD3. The AtGWD3 cDNA was isolated, heterologously expressed and the protein was purified to apparent homogeneity

Novel starch-related enzymes and carbohydrates.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
In chloroplasts, both biosynthesis and degradation of starch are strictly regulated but the mechanisms involved are still incompletely understood. Recent studies revealed two novel and regulatory relevant aspects in the biochemistry of starch: the phosphorylation of starch and the starch-related
Glucan, water dikinase (GWD) is a key enzyme of starch metabolism but the physico-chemical properties of starches isolated from GWD-deficient plants and their implications for starch metabolism have so far not been described. Transgenic Arabidopsis thaliana plants with reduced or no GWD activity

Glucan, water dikinase activity stimulates breakdown of starch granules by plastidial beta-amylases.

Samo registrirani uporabniki lahko prevajajo članke
Prijava / prijava
Glucan phosphorylating enzymes are required for normal mobilization of starch in leaves of Arabidopsis (Arabidopsis thaliana) and potato (Solanum tuberosum), but mechanisms underlying this dependency are unknown. Using two different activity assays, we aimed to identify starch degrading enzymes from
Although there is a great wealth of data supporting the occurrence of simultaneous synthesis and breakdown of storage carbohydrate in many organisms, previous 13CO2 pulse-chase based studies indicated that starch degradation does not operate in illuminated Arabidopsis leaves. Here we show that
Pridružite se naši
facebook strani

Najbolj popolna baza zdravilnih zelišč, podprta z znanostjo

  • Deluje v 55 jezikih
  • Zeliščna zdravila, podprta z znanostjo
  • Prepoznavanje zelišč po sliki
  • Interaktivni GPS zemljevid - označite zelišča na lokaciji (kmalu)
  • Preberite znanstvene publikacije, povezane z vašim iskanjem
  • Iščite zdravilna zelišča po njihovih učinkih
  • Organizirajte svoje interese in bodite na tekočem z raziskavami novic, kliničnimi preskušanji in patenti

Vnesite simptom ali bolezen in preberite o zeliščih, ki bi lahko pomagala, vnesite zelišče in si oglejte bolezni in simptome, proti katerim se uporablja.
* Vse informacije temeljijo na objavljenih znanstvenih raziskavah

Google Play badgeApp Store badge