Stran 1 iz 16 rezultatov
Peroxynitrite (ONOO-) and high mobility group box 1 protein (HMGB1) are important cytotoxic factors contributing to cerebral ischemia-reperfusion injury. However, the roles of ONOO- in mediating HMGB1 expression and its impacts on hemorrhagic transformation (HT) in ischemic
Enriched environment (EE) is shown to promote angiogenesis, neurogenesis and functional recovery after ischemic stroke. However, the underlying mechanisms remain unclear. C57BL/6 mice underwent middle cerebral artery occlusion (60 min) followed by reperfusion, after which mice were housed in either
Maintenance of white matter integrity in health and disease is critical for a variety of neural functions. Ischemic stroke in the white matter frequently results in degeneration of oligodendrocytes (OLs) and myelin. Previously, we found that toll-like receptor 2 (TLR2) expressed in OLs provides
Chinese Licorice root "gan zao" (Glycyrrhiza uralensis) is an ancient, medicinal herb utilized in Traditional Chinese Medicine for its presumably antiulcer, anti-inflammatory, antiviral, antibacterial, and expectorant properties. One of the major biologically active components is
High mobility group box 1 (HMGB1)-Toll-like receptor 4 (TLR4) signaling has been recently found to induce interleukin (IL)-17A secretion in drug-induced hepatitis and myocardial I/R injury. The purpose of this study is to evaluate whether HMGB1-TLR4 signaling could induce IL-17A secretion and lead
Glycyrrhizin (Gly) protects against brain injury induced by stroke. We studied whether Gly achieves its protection by inhibiting T cell activity and high-mobility group box 1 (HMGB1) release in the ischemic brain.
Stroke was induced by transient middle cerebral artery occlusion in rats and mice. Gly
Enriched environment (EE) has been shown to promote neurogenesis and functional recovery after ischemic stroke. However, the underlying molecular mechanisms are not fully understood. In this study, C57BL/6 mice underwent middle cerebral artery occlusion (60 min) followed by reperfusion, after which
Stroke is the second leading cause of death in industrialized countries and the most frequent cause of permanent disability in adults worldwide. The final outcome of stroke is determined not only by the volume of the ischemic core, but also by the extent of secondary brain damage inflicted to
Hyperglycemia adversely affects the outcome of ischemic stroke. Extracellular HMGB1 plays a role in aggravating brain damage in the postischemic brain. The aim of this study was to determine whether the extracellular HMGB1 is involved in the worsened ischemic damage during hyperglycemic stroke. Male
OBJECTIVE
It has been proven that extracellular HMGB1 is involved in progression of neurologic disorders, such as stroke, traumatic brain injury, meningitis and epilepsy. Glycyrrhizin (GL) is a direct inhibitor of HMGB1, and blocks HMGB1 release into the extracellular. We aim in this study to
Transplantation of endothelial progenitor cells (EPCs) leads to better outcomes in experimental stroke, but the mechanism remains unclear. It was reported that astrocytic-high mobility group box1 (HMGB1) promoted endogenous EPC-mediated neurovascular remodeling during stroke recovery. It is unclear
Acute ischemic stroke causes significant chronic disability worldwide. We designed this study to clarify the mechanism by which hypothermia helps alleviate acute ischemic stroke. In a middle cerebral artery occlusion model (4 h ischemia without reperfusion), hypothermia effectively reduces mean
High-mobility group box1 (HMGB1) is a nuclear protein widely expressed in the central nervous system. Extracellular HMGB1 serves as a proinflammatory cytokine and contributes to brain injury during the acute stage post-stroke. Recently, increasing evidence has demonstrated beneficial effects of
Inflammatory damage plays an important role in cerebral ischemic pathogenesis and represents a new target for treatment of stroke. Berberine is a natural medicine with multiple beneficial biological activities. In this study, we explored the mechanisms underlying the neuroprotective action of
Intracerebral hemorrhage (ICH) is a devastating form of stroke. Misoprostol, a synthetic prostaglandin E1 (PGE1) analog and PGE2 receptor agonist, has shown protection against cerebral ischemia. In this study, we tested the efficacy of misoprostol in the 12-month-old mice subjected to 1 of 2