Stran 1 iz 20 rezultatov
Using a tetrazolium-based assay, a NAD(P)H oxidoreductase was purified from plasma membranes prepared from soybean (Glycine max) hypocotyls. The enzyme, a tetramer of 85 kD, produces O2(.-) by a reaction that depended on menadione or several other 1,4-naphthoquinones, in apparent agreement with a
An NAD(P)H:(quinone acceptor) oxidoreductase (EC 1.6.99.2) was purified from Glycine max seedlings by means of chromatographic procedures. After 1371-fold purification, the enzyme showed a single band in IEF corresponding to an isoelectric point of 6.1. A single band was also found in native-PAGE
Quinone outside inhibitor (QoI; also known as strobilurin) fungicides sometimes are applied to soybean (Glycine max) fields to help manage frogeye leaf spot of soybean (caused by Cercospora sojina) in the United States. In August 2010, soybean leaflets exhibiting severe frogeye leaf spot symptoms
Soybean seeds (Glycine max) were grown in soil containing 10 ppm of benzo[a]pyrene (BaP). After 76 days growth, three kinds of quinones, namely BaP-1,6-, 3,6- and 6,12-quinones, were isolated and identified. However, the formative mechanism of the quinones in leaves has yet to be determined.
BACKGROUND
Since the invasion of Phakopsora pachyrhizi (Syd. & P. Syd.) in Brazil, there have been detrimental yield losses of soybeans [Glycine max (L.) Merr.]. Disease management is mainly based on fungicide treatment. The sensitivity of single P. pachyhrizi isolates towards different
In order to distinguish the pathways involved in the oxidation of matrix NADH in plant mitochondria, the oxidation of NADH and nicotinamide hypoxanthine dinucleotide (reduced form) was investigated in submitochondrial particles prepared from beetroot (Beta vulgaris L. cv. Derwent Globe) and soybeans
We investigated the effect of short-term changes in temperature on alternative (Alt) and cytochrome (Cyt) pathway respiration, both in intact tissues and isolated mitochondria of 14-d-old cotyledons of soybean (Glycine max L. cv Stevens). We also established the extent to which temperature alters
This study investigates the stress-mitigating effects of endophytic Penicillium funiculosum LHL06 on soybean roots via modulation of physio-biochemical, molecular, and proteomic responses to combined heavy metal (Ni, Cu, Pb, Cr, and Al) toxicity. Preliminary screening revealed that LHL06 can
One attractive strategy to discover more active and/or crop-selective herbicides is to make structural changes to currently registered compounds. This strategy is especially appealing for those compounds with limited herbicide resistance and whose chemistry is accompanied with transgenic tools to
External NADH and succinate were oxidized at similar rates by soybean (Glycine max) cotyledon and leaf mitochondria when the cytochrome chain was operating, but the rate of NADH oxidation via the alternative oxidase was only half that of succinate. However, measurements of the redox poise of the
A novel, Gram-staining-negative, rod-shaped, aerobic and motile bacterium, designated strain CC-SKC2(T), was isolated from the root tumor of a green bell pepper (Capsicum annuum var. grossum) plant in Taiwan. Cells were positive for oxidase and catalase activities and exhibited growth at 25-37 °C,
A Gram-staining-negative, non-motile, catalase- and oxidase-positive strain, designated CCNWSP36-1(T), was isolated from the nodule surface of soybean [Glycine max (L.) Merrill] cultivar Zhonghuang 13. The 16S rRNA gene sequence analysis clearly showed that the isolate represented a member of the
A nuclear mutation of Glycine max (soybean) segregates 1:2:1 in regard to chlorophyll content. The heterozygous (LG) leaf blade contains about one-half the pigment content of the wild type (DG) per gram fresh weight. A lethal yellow (LY) type contains about 1 to 2% of the DG leaf pigment values. The
Frogeye leaf spot, caused by Cercospora sojina Hara, is a foliar disease affecting soybean (Glycine max (L.) Merr.), often managed by applications of quinone outside inhibitor (QoI) fungicides. In 2013 and 2014, 634 C. sojina monoconidial isolates were collected from soybean fields throughout
Glycine soja is a halophytic soybean native to saline soil in Yellow River Delta, China. Photosystem I (PSI) performance and the interaction between photosystem II (PSII) and PSI remain unclear in Glycine soja under salt stress. This study aimed to explore salt adaptability in Glycine