Stran 1 iz 120 rezultatov
UDP-xylose (UDP-Xyl) is a sugar donor for the synthesis of glycoproteins, polysaccharides, various metabolites, and oligosaccharides in plants, vertebrates, and fungi. In plants, the biosynthesis of UDP-Xyl from UDP-glucuronic acid (UDP-GlcA) appears to be catalyzed by numerous UDP-glucuronic acid
BACKGROUND
Baker's yeast (Saccharomyces cerevisiae) has been engineered for xylose utilization to enable production of fuel ethanol from lignocellulose raw material. One unresolved challenge is that S. cerevisiae lacks a dedicated transport system for pentose sugars, which means that xylose is
Plant-specific N-glycosylation, such as the introduction of core alpha1,3-fucose and beta1,2-xylose residues, is a major obstacle to the utilization of plant cell- or plant-derived recombinant therapeutic proteins. The beta1,4-N-acetylglucosaminyltransferase III (GnTIII) introduces a bisecting
Xylose utilization is inhibited by glucose uptake in xylose-assimilating yeasts, including Candida tropicalis, resulting in limitation of xylose uptake during the fermentation of glucose/xylose mixtures. In this study, a heterologous xylose transporter gene (At5g17010) from Arabidopsis thaliana was
A novel synthesis of nucleotide sugars was conducted to prepare UDP-α-D-xylose and UDP-β-L-arabinose without utilizing protection strategies or advanced purification techniques. Sugar-1-phosphates of D-xylose and L-arabinose were synthesized from their β-glycosylsulfonylhydrazides and evaluated as
Uridine 5'-diphosphate (UDP)-xylose (UDP-Xyl) synthase (UXS) catalyzes the oxidative decarboxylation of UDP-glucuronic acid (UDP-GlcUA) to UDP-Xyl. The closely related UDP-glucuronic acid 4-epimerase (UGAE) interconverts UDP-GlcUA and UDP-galacturonic acid (UDP-GalUA) in a highly similar manner via
To improve the pentose fermentation rate in Flammulina velutipes, the putative xylose isomerase (XI) gene from Arabidopsis thaliana was cloned and introduced into F. velutipes and the gene expression was evaluated in transformants. mRNA expression of the putative XI gene and XI activity were
The controlled distribution of sugars between assimilate-exporting source tissues and sugar-consuming sink tissues is a key element for plant growth and development. Monosaccharide transporters of the SUGAR TRANSPORT PROTEIN (STP) family contribute to the uptake of sugars into sink cells. Here, we
UDP-D-glucuronic acid and UDP-D-xylose are required for the biosynthesis of glycosaminoglycan in mammals and of cell wall polysaccharides in plants. Given the importance of these glycans to some organisms, the development of a system for production of UDP-D-glucuronic acid and UDP-D-xylose from a
Xylan and xyloglucan are the two major cell wall hemicelluloses in plants, and their biosynthesis requires a steady supply of the sugar donor, UDP-xylose. UDP-xylose is synthesized through conversion of UDP-glucuronic acid (UDP-GlcA) by the activities of UDP-xylose synthase (UXS). There exist six
The goal of this investigation was to determine the effect of a xylose transport system on glucose and xylose co-consumption as well as total xylose consumption in Saccharomyces cerevisiae. We expressed two heterologous transporters from Arabidopsis thaliana in recombinant xylose-utilizing S.
The plant glycosyltransferases, beta1,2-xylosyltransferase (XylT) and core alpha1,3-fucosyltransferase (FucT), are responsible for the transfer of beta1,2-linked xylose and core alpha1,3-linked fucose residues to glycoprotein N-glycans. These glycan epitopes are not present in humans and thus may
Most glycosylation reactions require activated glycosyl donors in the form of nucleotide sugars to drive processes such as posttranslational modifications and polysaccharide biosynthesis. Most plant cell wall polysaccharides are biosynthesized in the Golgi apparatus from cytosolic-derived nucleotide
d-Apiose is a plant-specific branched-chain monosaccharide found in rhamnogalacturonan II (RG-II), apiogalacturonan, and several apioglycosides. Within RG-II, d-apiose serves as the binding site for borate, which leads to the formation of cross-links within the wall. Biochemical studies in duckweed
UDP-xylose (UDP-Xyl) is synthesized by UDP-glucuronic acid decarboxylases, also termed UDP-Xyl synthases (UXSs). The Arabidopsis genome encodes six UXSs, which fall into two groups based upon their subcellular location: the Golgi lumen and the cytosol. The latter group appears to play an important