Albanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Methods in Molecular Biology 2011

Cell surface engineering of mesenchymal stem cells.

Vetëm përdoruesit e regjistruar mund të përkthejnë artikuj
Identifikohuni Regjistrohu
Lidhja ruhet në kujtesën e fragmenteve
Debanjan Sarkar
Weian Zhao
Ashish Gupta
Wei Li Loh
Rohit Karnik
Jeffrey M Karp

Fjalë kyçe

Abstrakt

By leveraging the capacity to promote regeneration, stem cell therapies offer enormous hope for solving some of the most tragic illnesses, diseases, and tissue defects world-wide. However, a significant barrier to the effective implementation of cell therapies is the inability to target a large quantity of viable cells with high efficiency to tissues of interest. Systemic infusion is desired as it minimizes the invasiveness of cell therapy, and maximizes practical aspects of repeated doses. However, cell types such as mesenchymal stem cells exhibit a poor homing capability or lose their capacity to home following culture expansion (i.e. FASEB J 21:3197-3207, 2007; Circulation 108:863-868, 2003; Stroke: A Journal of Cerebral Circulation 32:1005-1011; Blood 104:3581-3587, 2004). To address this challenge, we have developed a simple platform technology to chemically attach cell adhesion molecules to the cell surface to improve the homing efficiency to specific tissues. This chemical approach involves a stepwise process including (1) treatment of cells with sulfonated biotinyl-N-hydroxy-succinimide to introduce biotin groups on the cell surface, (2) addition of streptavidin that binds to the biotin on the cell surface and presents unoccupied binding sites, and (3) attachment of biotinylated targeting ligands that promote adhesive interactions with vascular endothelium. Specifically, in our model system, a biotinylated cell rolling ligand, sialyl Lewisx (SLeX), found on the surface of leukocytes (i.e., the active site of the P-selectin glycoprotein ligand (PSGL-1)), is conjugated on MSC surface. The SLeX engineered MSCs exhibit a rolling response on a P-selectin coated substrate under shear stress conditions. This indicates that this approach can be used to potentially target P-selectin expressing endothelium in the more marrow or at sites of inflammation. Importantly, the surface modification has no adverse impact on MSCs' native phenotype including their multilineage differentiation capacity, viability, proliferation, and adhesion kinetics. We anticipate that the present approach to covalently modify the cell surface and immobilize required ligands is not limited to MSCs or the SLeX ligand. Therefore, this technology should have broad implications on cell therapies that utilize systemic administration and require targeting of cells to specific tissues. The approach may also be useful to promote specific cell-cell interactions. In this protocol, we describe the conjugation of SLeX on MSC surface and methods to study cell rolling behaviors of SLeX-modified MSCs on a P-selectin coated substrate using an in vitro flow chamber assay. We also provide a brief description of cell characterization assays that can be used to examine the impact of the chemical modification regimen.

Bashkohuni në faqen
tonë në facebook

Baza e të dhënave më e plotë e bimëve medicinale e mbështetur nga shkenca

  • Punon në 55 gjuhë
  • Kurime bimore të mbështetura nga shkenca
  • Njohja e bimëve nga imazhi
  • Harta GPS interaktive - etiketoni bimët në vendndodhje (së shpejti)
  • Lexoni botime shkencore në lidhje me kërkimin tuaj
  • Kërkoni bimë medicinale nga efektet e tyre
  • Organizoni interesat tuaja dhe qëndroni në azhurnim me kërkimet e lajmeve, provat klinike dhe patentat

Shkruani një simptomë ose një sëmundje dhe lexoni në lidhje me barërat që mund të ndihmojnë, shtypni një barishte dhe shikoni sëmundjet dhe simptomat që përdoren kundër.
* I gjithë informacioni bazohet në kërkimin shkencor të botuar

Google Play badgeApp Store badge