Fatigue of rat hindlimb motor units: biochemical-physiological associations.
Fjalë kyçe
Abstrakt
Associations between fatigability and biochemical properties within motor unit (MU) types were explored in two hindlimb muscles of the adult rat. Type FF MUs in extensor digitorum longus and type S units in soleus were subjected either to a moderate (type FF) or severe (type S) 6-min, fatigue-inducing stimulation protocol. For both MU types, the range of values for their fatigability was considerably greater than the ranges in the activity levels of three enzymes in the units' constituent muscle fibers (MFs). These enzymes represented major energy-yielding pathways: adenylokinase, for high-energy phosphate metabolism; lactate dehydrogenase, for anaerobic glycolysis; and malate dehydrogenase, for oxidative metabolism. There were also relatively weak associations between the fatigue indices of the MUs and the activity levels of the three enzymes. Thus, this work supports previous conclusions that the force decline exhibited by MUs during electrically evoked contractions depends on both MF biochemistry and other intracellular mechanisms. Electromyographic measurements suggested that these other mechanisms are distal to the intramuscular branches of the axon in type FF units, and distal to excitation-contraction coupling in type S units.