Albanian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Animal Ecology 2020-Aug

Urbanization and plant invasion alter the structure of litter microarthropod communities

Vetëm përdoruesit e regjistruar mund të përkthejnë artikuj
Identifikohuni Regjistrohu
Lidhja ruhet në kujtesën e fragmenteve
Bruce Malloch
Shinichi Tatsumi
Sebastian Seibold
Marc Cadotte
J MacIvor

Fjalë kyçe

Abstrakt

Anthropogenic activity underpins the creation of urban ecosystems, often with introduced or invasive species playing a large role in structuring ecological communities. While the effects of urbanization on charismatic taxa such as birds, bees or butterflies have received much attention, the impacts on small and inconspicuous organisms remain poorly understood. Here, we assess how the community structure of leaf litter-inhabiting microarthropods in city parks varies along an urbanization gradient in Toronto, Canada. At each park, we established paired forest understory plots which were either dominated by native vegetation or dog-strangling vine (Vincetoxicum rossicum), an invasive species that is spreading throughout northeastern North America and abundant in urban areas. We compared microarthropod richness, abundance, and diversity in ecological traits between invaded and non-invaded plots as well as compositional dissimilarities among plots across the urbanization gradient. We recorded 123 genera and found: i) there was a negative effect of urbanization on microarthropod richness and abundance but only in invaded plots; ii) richness and abundance increased continuously with urbanization in non-invaded plots, but peaked at intermediate urbanization levels in invaded plots; and iii) there was significant turnover with increasing urbanization, with distinct communities represented in highly urbanized areas compared to less urbanized areas, regardless of whether invaded. We also found litter microarthropod richness and abundance increased with soil ammonium and decreased with nitrate. These trends were especially strong for fungivorous microarthropods, however there was no relationship between soil nutrients and urbanization or invasion. Urbanization and biological invasion drive biodiversity change, and there is a need to disentangle these effects on ecological communities and related ecosystem processes. We show microarthropod communities change with urbanization, with the effects of invasion most prominent in non-urban areas. Here, there is high richness and abundance but low ecological trait diversity, possibly because certain feeding traits are excluded and others overrepresented. Understanding of urban ecological systems must include knowledge of the microarthropods that interact widely across food webs, form distinct communities in highly urban areas, and drive many of the important ecological functions upon which people in cities depend.

Keywords: beta diversity; community assembly; dog-strangling vine; ecological traits; functional diversity; mites; soil mesofauna; urban forests.

Bashkohuni në faqen
tonë në facebook

Baza e të dhënave më e plotë e bimëve medicinale e mbështetur nga shkenca

  • Punon në 55 gjuhë
  • Kurime bimore të mbështetura nga shkenca
  • Njohja e bimëve nga imazhi
  • Harta GPS interaktive - etiketoni bimët në vendndodhje (së shpejti)
  • Lexoni botime shkencore në lidhje me kërkimin tuaj
  • Kërkoni bimë medicinale nga efektet e tyre
  • Organizoni interesat tuaja dhe qëndroni në azhurnim me kërkimet e lajmeve, provat klinike dhe patentat

Shkruani një simptomë ose një sëmundje dhe lexoni në lidhje me barërat që mund të ndihmojnë, shtypni një barishte dhe shikoni sëmundjet dhe simptomat që përdoren kundër.
* I gjithë informacioni bazohet në kërkimin shkencor të botuar

Google Play badgeApp Store badge