Faqja 1 nga 33 rezultatet
The chemiluminescence (CL) of oxidation of non-steroidal anti-inflammatory drugs (NSAIDs) by Ce(IV) ions, was recorded in the presence and absence europium(III) ions, in solution of pH ~ 4 of solution. Kinetic curves and CL emission spectra of the all studied systems were discussed. CL of measurable
Chronical exposure to volatile acetone could damage to the liver and kidney or nerve, and cause inflammation. Design of novel materials for the sensitive and selective detection of acetone is of great importance. We report europium (Eu)-containing covalent organic framework (DhaTab-COF-EuIL)
Chemokine receptors have been implicated in several disease processes such as acute and chronic inflammation, cancer, and allograft rejection and are therefore targets for drug development. The chemokine receptors CCR5 and CXCR4 are of particular interest as they serve as entry cofactors for human
Alpha-1-acid glycoprotein (α1 -AGP) is an important blood plasma glycoprotein. Following an acute-phase reaction such as stress, inflammation, burn, or infection, the bloodstream concentration of α1 -AGP can increase up to 400 % of its normal concentration. A wide range of drugs is known to bind α1
GLC and NMR methods are described for the determination of four possible isomeric impurities in the novel anti-inflammatory agent benoxaprofen. The 2- and 3-chlorophenyl isomers were determined by GLC after alkaline hydrolysis and subsequent methylation. A rapid NMR procedure, using the lanthanide
Lanthanide-doped sodium yttrium fluoride (NaYF4) nanoparticles exhibit novel optical properties which make them be widely used in various fields. The extensive applications increase the chance of human exposure to these nanoparticles and thus raise deep concerns regarding their riskiness. In the
Our recent studies demonstrated that electrostatically stabilized very small superparamagnetic iron oxide particles (VSOPs) are promising MRI probes for detecting various pathological aspects of autoimmunity in the central nervous system (CNS). However, investigation of the precise tissue and
The size, shape and chemical composition of europium (Eu3+) cobalt ferrite (CFEu) nanoparticles were optimized for use as a "multimodal imaging nanoprobe" for combined fluorescence and magnetic resonance bioimaging. Doping Eu3+ ions into a CF structure imparts unique bioimaging and magnetic
Accumulating evidence suggests that ischemia-reperfusion-induced injury is associated with the formation of reactive oxygen species (ROS). This study demonstrates the therapeutic effectiveness of novel europium-doped cerium oxide nanoparticles (Eu-doped Ceria NPs) as ROS scavengers in a mouse model
Ambient ultrafine particulate matter (UPM), less than 100 nm in size, has been linked to the development and exacerbation of pulmonary diseases. Age differences in susceptibility to UPM may be due to a difference in delivered dose as well as age-dependent differences in lung biology and clearance.
Specific targeting of inflammation remains a challenge in many pathologies, because of the necessary balance between host tolerance and efficacious inflammation resolution. Here, we discovered a short, 4-mer peptide which possesses antagonist properties towards CC chemokine receptor 2 (CCR2), but
Although much research has gone into the design of nanomaterials, inflammatory response still impedes the capacity of nanomaterial-induced tissue regeneration. In-situ incorporation of nutrient elements in silica-based biomaterials has emerged as a new option to endow the nanomaterials modulating
Development of fluorescent/luminescent probes for rapid, selective and sensitive detection of reactive oxygen species (ROS) is of great significance for understanding the roles of ROS in pathophysiological processes. In the present research, a visible-light-excitable Eu3+ complex-based
Luminescence spectroscopy has been used to monitor the selective and reversible binding of pH sensitive, macrocyclic lanthanide complexes, [LnL1], to the serum protein α1-AGP, whose concentration can vary significantly in response to inflammatory processes. On binding α1-AGP, a very strong induced
One new, promising approach in the medical field is represented by hydroxyapatite doped with luminescent materials for biomedical luminescence imaging. The use of hydroxyapatite-based luminescent materials is an interesting area of research because of the attractive characteristics of such