Faqja 1 nga 28 rezultatet
Cancer results from aberrant signaling pathways that result in uncontrolled cellular proliferation. The epidemiological studies have shown a strong inverse correlation between dietary consumption of cruciferous vegetables and incidences of cancer. Isothiocyanates (ITCs) are present in cruciferous
Regulation of cellular processes by dietary nutrients is known to affect the likelihood of cancer development. One class of cancer-preventive nutrients, isothiocyanates (ITCs), derived from the consumption of cruciferous vegetables, is known to have various effects on cellular biochemistry. One
Betong watercress (Nasturtium officinale R.Br.) contains phenethyl isothiocyanate (PEITC), derived from myrosinase-mediated hydrolysis of glucosinolates. Effects of fresh and cooked Betong watercress (FBW & CBW) on N-demethylation and C-8-hydroxylation of caffeine (CF) in rats were investigated.
The herb of Nasturtium officinale is a raw material that has long been used in the traditional medicine of Iran, Azerbaijan, Morocco and Mauritius. Nowadays, this raw material is the object of numerous professional pharmacological studies that have demonstrated its antioxidant, anticancer,
BACKGROUND
Nasturtium officinale R. Br. (watercress) has long been used in Iranian folk medicine to treat hypertension, hyperglycemia, and renal colic. Moreover, anticancer, antioxidant, and hepatoprotective properties of N. officinale have been reported.
OBJECTIVE
In this study, anti-inflammatory
Phenethyl isothiocyanate (PEITC) is a potential chemopreventive agent that is present naturally in widely consumed vegetables, especially in watercress. It has been extensively investigated for its anticancer activities against lung, forestomach and esophageal tumorigenesis. Here we investigated the
Isothiocyanates (ITCs) found in cruciferous vegetables have demonstrated cancer preventive activity in animals, and increased dietary intake of ITCs has been shown to be associated with a reduced cancer risk in humans. ITCs exert their cancer chemopreventive action by multiple mechanisms, for
Watercress (Nasturtium officinale) is a member of the Brassicaceae family and a rich source of glucosinolate, which has been shown to possess anticancer properties. To extract these compounds from N. officinale for study, a method was developed in which Agrobacterium rhizogenes was used to transfer
Watercress (Nasturtium officinale R. Br.) is a nutrient intense, leafy crop that is consumed raw or in soups across the globe, but for which, currently no genomic resources or breeding programme exists. Promising morphological, biochemical and functional genomic variation was identified for the
Although it is known to be a rich source of the putative anti-cancer chemicals isothiocyanates, watercress has not been extensively studied for its cancer preventing properties. The aim of this study was to investigate the potential chemoprotective effects of crude watercress extract toward three
Cruciferous vegetables, such as broccoli and watercress, have been studied extensively aiming to evaluate their chemopreventive properties. Some of them have already been established using animal models. The ITCs induce Phase II enzymes related to detoxification processes of chemical carcinogens to
Gluconasturtiin, a glucosinolate present in watercress, is hydrolysed by myrosinase to form gluconasturtiin-isothiocyanate (GNST-ITC), which has potential chemopreventive effects; however, the underlying mechanisms of action have not been explored, mainly in human cell lines. The purpose of the
Naturally occurring and synthetic isothiocyanates are among the most effective chemopreventive agents known. A wide variety of isothiocyanates prevent cancer of various tissues including the rat lung, mammary gland, esophagus, liver, small intestine, colon, and bladder. Mechanistic studies have
Cigarette smoking is the major cause of lung cancer in humans. The continuous increase in the prevalence of cigarette smoking worldwide demands a practical means to circumvent this serious health problem. Our research has focused on the development of new chemopreventive agents against lung
Epidemiological studies continue to support the premise that diets rich in fruits and vegetables may offer protection against cancer of various anatomic sites. This correlation is quite persuasive for vegetables including ALLIUM (e. g., garlic) and cruciferous (e. g., broccoli and watercress)