Faqja 1 nga 65 rezultatet
OBJECTIVE
There is growing evidence that cancer chemopreventive agents including isothiocyanates (ITCs) from cruciferous vegetables target epigenetic mechanisms. The present report will summarize novel findings of ITCs on histone deacetylase activity, DNA methylation, and short noncoding microRNAs,
Isothiocyanates (ITCs) are a group of naturally occurring compounds that occur as thioglucoside conjugates, termed glucosinolates, in plants and cruciferous vegetables such as watercress, Brussels sprouts, broccoli, cabbage, kai choi, kale, horseradish, radish and turnip. ITCs inhibit the
By international standards New Zealand (population 3.8 x 10(6)) has a high rate of colorectal cancer, with approximately 2000 new cases occurring and approximately 1000 deaths each year. But within the New Zealand population, a lower incidence of colorectal cancer is reported for Maori than for
Biliary tract cancer (BTC) is a highly malignant cancer. BTC exhibits a low response rate to cisplatin (CDDP) treatment, and therefore, an understanding of the mechanism of CDDP resistance is urgently needed. Here, we show that BTC cells develop CDDP resistance due, in part, to upregulation of
Phenethyl isothiocyanate (PEITC), a constituent of edible cruciferous vegetables such as watercress, not only affords significant protection against chemically induced cancer in experimental rodents but also inhibits growth of human cancer cells by causing apoptotic and autophagic cell death.
Isothiocyanates (ITCs) derived from cruciferous vegetables, including phenethyl isothiocyanate (PEITC) and sulforaphane (SFN), exhibit in vivo activity against prostate cancer in a xenograft and transgenic mouse model, and thus are appealing for chemoprevention of this disease. Watercress
Epidemiological surveys indicate that intake of cruciferous vegetables is inversely related to prostate cancer incidence, although the responsible dietary factors have not been identified. Our studies demonstrated that exposure of human prostate cancer cells in culture to the N-acetylcysteine (NAC)
Natural and synthetic isothiocyanates (ITCs) are versatile chemopreventive agents in many animal systems. We have shown that phenethyl ITC (PEITC) and 6-phenylhexyl ITC (PHITC) are potent inhibitors against lung tumorigenesis induced by tobacco nitrosamine
Natural isothiocyanates from cruciferous vegetables have been described as important dietary factors for prostate cancer prevention. Phenethyl isothiocyanate (PEITC), found rich in watercress, induces growth arrest and apoptosis in prostate cancer cells, and also inhibits the testosterone-mediated
Increased de novo synthesis of fatty acids is a distinctive feature of prostate cancer, which continues to be a leading cause of cancer-related deaths among American men. Therefore, inhibition of de novo fatty acid synthesis represents an attractive strategy for chemoprevention of prostate cancer.
Fascioliasis is caused by watercress and similar freshwater plants or drinking water or beverages contaminated with metacercariae. Fascioliasis can radiologically mimic many primary or metastatic liver tumors. Herein, we aimed to present the treatment process of a patient with Substantial quantities of isothiocyanates are released upon consumption of normal amounts of a number of cruciferous vegetables. Some of these naturally occurring isothiocyanates such as phenethyl isothiocyanate (PEITC), benzyl isothiocyanate (BITC) and sulforaphane are effective inhibitors of
Although it is known to be a rich source of the putative anti-cancer chemicals isothiocyanates, watercress has not been extensively studied for its cancer preventing properties. The aim of this study was to investigate the potential chemoprotective effects of crude watercress extract toward three
Naturally occurring and synthetic isothiocyanates are among the most effective chemopreventive agents known. A wide variety of isothiocyanates prevent cancer of various tissues including the rat lung, mammary gland, esophagus, liver, small intestine, colon, and bladder. Mechanistic studies have
Epidemiological studies continue to support the premise that diets rich in fruits and vegetables may offer protection against cancer of various anatomic sites. This correlation is quite persuasive for vegetables including ALLIUM (e. g., garlic) and cruciferous (e. g., broccoli and watercress)