15 rezultatet
As an attempt to search for bioactive natural products exerting anti-inflammatory activity, we have evaluated the anti-inflammatory effects of euscaphic acid (19α-hydroxyursane-type triterpenoids, EA) isolated from roots of Rosa rugosa and its underlying molecular mechanisms in lipopolysaccharide
Rosa rugosa Thunb, a deciduous shrub of the genus Rosa, has been widely used to treat stomach aches, diarrhoea, pain, and chronic inflammatorydisease in eastern Asia. In recent years, our research team has extensively studied the Rosa rugosa flowerextract, and specificallyundertook pharmacological
To search for antiinflammtory 19alpha-hydroxyursane-type triterpenoids, the MeOH extract of the roots of Rosa rugosa (Rosaceae) was fractionated. The active fraction of the EtOAc extract was hydrolyzed in alkaline solution to give a hydrolyzed fraction. Both extracts showed
Although Rosa rugosa has been applied for preventing coronary artery disease, the pharmacological mechanism is little explored. In this study, the effects and mechanisms of Rosa rugosa flavonoids (RRF) on myocardial ischemia reperfusion injury (MIRI) were investigated.
Mice were pretreated by
Rosa rugosa (Thunb.) is used in Chinese traditional medicine with the functions of promoting blood circulation, relieving the depressed liver and attenuating breast disorders. This study was to investigate the anti-hyperplasia effects of the polyphenols-rich fraction from R. rugosa (FRR) in rat. Rat
Rosa rugosa Thunb. is a traditional Chinese medicine that was used in the treatment of cardiovascular diseases and relative risk factors such as diabetes, hyperlipidemia, hypertension, and inflammation. Rosa rugosa flavonoids (RRFs) are the main components in Rosa rugosa Thunb. Several This study evaluated the antioxidative and cardioprotective effects of total flavonoids extracted from Xinjiang sprig Rosa rugosa on ischemia/reperfusion (I/R) injury using an isolated Langendorff rat heart model. The possible mechanism of Xinjiang sprig rose total flavonoid (XSRTF) against I/R
Rosa rugosa Thunb., is as a medicinal plant known for anti-diabetic, and anti-inflammatory activities. However, the specific active compounds responsible for the individual pharmacological effects of in R. rugosa extract (95% EtOH) remain unknown. Here, we hypothesized that terpenoid structure, the
We previously reported that extract of Rosa rugosa root and its active triterpenoids constituents exhibit anti-nociceptive and anti-inflammatory effects in animal models. However, little is known about the effects and the molecular mechanism of the 19α-hydroxyursane-type triterpenoids. Among the
The pro-inflammatory cytokine interleukin-1beta (IL-1β) plays critical roles in pathogenesis of osteoarthritis (OA). Tormentic acid (TA), a triterpene isolated from Rosa rugosa, has anti-inflammatory activity. However, the anti-inflammatory effect of TA on OA is still unclear. So, in the present
OBJECTIVE
Periodontal disease is one of the most prevalent oral diseases, which is associated with inflammation of the tooth-supporting tissues. Tormentic acid (TA), a triterpene isolated from Rosa rugosa, has been reported to exert anti-inflammatory effects. The aim of this study was to investigate
BACKGROUND
Rosa rugosa Thunb. (Rosaceae) has been traditionally used for treatments of diabetes, chronic inflammatory diseases, pain, and anticancer in Korea.
OBJECTIVE
We investigate the inhibitory effect of histone acetyltransferase activity from the methanol extract of stems of Rosa rugosa on
The huge health-beneficial potential of polysaccharides encourages the search for novel sources and applications of these compounds. One poorly explored source of polysaccharides is the rose. The content and biological activity of polysaccharides in rose organs is an almost completely unaddressed
Rosa rugosa is a species of rose native to eastern Asia. The root of R. rugosa has been used to treat diabetes mellitus, pain and chronic inflammatory disease, and a R. rugosa petal extract has a strong anti-oxidant effect. In the present study, we examined if solvent fractions from white rose petal
Although multiple studies have revealed that gallic acid plays an important role in the inhibition of malignant transformation, cancer development, and inflammation, the molecular mechanism of gallic acid in inflammatory diseases is still unclear. In this study, we identified gallic acid from Rosa