Serbian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

Method of treating allergic asthma with antibodies to IL-6

Само регистровани корисници могу преводити чланке
Пријави се / Пријави се
Веза се чува у привремену меморију
Leon Garcia-Martinez
Anne Jensen
Katie Anderson
Benjamin Dutzar
John Latham
Brian Kovacevich
Jeffrey Smith
Mark Litton
Randall Schatzman

Кључне речи

Информације о патенту

Број патента10391169
Филед09/25/2017
Датум патента08/26/2019

Апстрактан

The present invention is directed to therapeutic methods using IL-6 antagonists such as an Ab1 antibody or antibody fragment having binding specificity for IL-6 to prevent or treat disease or to improve survivability or quality of life of a patient in need thereof. In preferred embodiments these patients will comprise those exhibiting (or at risk of developing) an elevated serum C-reactive protein level, reduced serum albumin level, elevated D-dimer or other coagulation cascade related protein(s), cachexia, fever, weakness and/or fatigue prior to treatment. The subject therapies also may include the administration of other actives such as chemotherapeutics, anti-coagulants, statins, and others. Additional preferred embodiments of the subject invention relate to therapeutic compositions and methods treating or preventing rheumatoid arthritis, especially subcutaneous and intravenous formulations and dosage regimens using IL-6 antagonists according to the invention, as well as methods for preventing or treating GVHD or leukemia relapse in subjects receiving transplanted cells, tissue or organs, use thereof in the treatment or prevention of mucositis, and use thereof to potentiate the cytotoxic, apoptotic, and anti-metastatic or anti-invasive effects of chemotherapeutics and radiation on cancers, especially cancers that have developed a resistance to radiation or chemotherapy, such as an EGFR inhibitor.

Захтеви

What is claimed is:

1. A method of treating allergic asthma by administering an effective dosage of an anti-IL-6 antibody or IL-6 binding antibody fragment comprising a variable light chain polypeptide having CDRs of SEQ ID NO:4, 5 and 6 and a variable heavy chain polypeptide having CDRs of SEQ ID NO:7, 8 or 120, and 9.

2. The method of claim 1 wherein the antibody dosage ranges from about 0.1 mg/kg to about 20 mg/kg of the patient's body-weight.

3. The method of claim 1 wherein said antibody or antibody fragment comprises a light chain polypeptide comprising: a polypeptide having at least 90% identity to SEQ ID NO: 709 and a heavy chain polypeptide comprising: a polypeptide having at least 90% identity to SEQ ID NO: 657.

4. The method of claim 1, wherein said anti-IL-6 antibody contains variable heavy and light sequences which are at least 95% identical to the variable heavy and light sequences contained in SEQ ID NO: 19 or 20.

5. The method of claim 1, wherein said anti-IL-6 antibody contains variable heavy and light sequences which are at least 98% identical to the variable heavy and light sequences contained in SEQ ID NO: 19 or 20.

6. The method of claim 1, wherein said anti-IL-6 antibody contains variable heavy and light sequences which are at least 979% identical to the variable heavy and light sequences contained in SEQ ID NO: 19 or 20.

7. The method of claim 1, wherein said anti-IL-6 antibody contains variable heavy and light sequences which are at least 99% identical to the variable heavy and light sequences contained in SEQ ID NO: 19 or 20.

8. The method of claim 1 wherein said anti-IL-6 antibody contains the variable heavy and light sequences contained in SEQ ID NO: 19 or 20.

9. The method of claim 1, wherein the anti-IL-6 antibody or antibody fragment is a human, humanized, single chain or chimeric antibody.

10. The method of claim 8, wherein the anti-IL-6 antibody or antibody fragment is a human, humanized, single chain or chimeric antibody.

Опис

The sequence listing in the file named "56256o2006.txt" having a size of 332,224 bytes that was created Sep. 26, 2017 is hereby incorporated by reference in its entirety.

BACKGROUND OF THE INVENTION

Field of the Invention

This invention is an extension of Applicants' prior invention disclosed in the above-referenced patent applications relating to novel anti-IL-6 antibodies, novel therapies and therapeutic protocols utilizing anti-IL-6 antibodies, and pharmaceutical formulations containing anti-IL-6 antibodies. In preferred embodiments, an anti-IL-6 antibody is Ab1, which includes rabbit or humanized forms thereof, as well as heavy chains, light chains, fragments, variants, and CDRs thereof, or an antibody or antibody fragment that specifically binds to the same linear or conformational epitope(s) on an intact human IL-6 polypeptide fragment thereof as Ab1. The subject application pertains in particular to preferred formulations and therapeutic uses of an exemplary humanized antibody referred to herein as Ab1 and variants thereof. In preferred embodiments, the anti-IL-6 antibody has an in vivo half-life of at least about 25 days, an in vivo effect of raising albumin, has an in vivo effect of lowering C-reactive protein, has an in vivo effect of restoring a normal coagulation profile, possesses a binding affinity (Kd) for IL-6 of less than about 50 picomolar, and/or has a rate of dissociation (K.sub.off) from IL-6 of less than or equal to 10.sup.-4 S.sup.-1.

The invention also pertains to methods of screening for diseases and disorders associated with IL-6, and methods of preventing or treating diseases or disorders associated with IL-6 by administering said antibody or a fragment or a variant thereof.

In one aspect, this invention pertains to methods of improving survivability or quality of life of a patient in need thereof; comprising administering to the patient an anti-IL-6 antibody, such as Ab1 or a fragment or variant thereof, whereby the patient's C-reactive protein ("CRP") level is lowered, and/or the patient's albumin level is raised, and optionally monitoring the patient to determine the patient's CRP and/or albumin level.

In another aspect, this invention relates to methods of lowering the C-reactive protein level in a patient in need thereof, comprising administering to the patient an IL-6 antagonist such as Ab1, whereby the patient's CRP level is lowered, and monitoring the patient to assess the CRP level. In another aspect, this invention relates to methods of raising the albumin level in a patient in need thereof, comprising administering to the patient an IL-6 antagonist such as Ab1, whereby the patient's serum albumin level is raised, and monitoring the patient to assess the albumin level.

In another aspect, this invention pertains to methods of preventing or treating cachexia, weakness, fatigue, and/or fever in a patient in need thereof, e.g., a patient showing elevated CRP levels, comprising administering to the patient an anti-IL-6 antibody or antibody fragment or variant thereof, whereby the patient's cachexia, weakness, fatigue, and/or fever is improved or restored to a normal condition, and optionally monitoring the patient to assess cachexia, weakness, fatigue, and/or fever. In another embodiment the present invention further relates to the use of the subject anti-IL-6 antibodies and antibody fragments for the treatment or prevention of mucositis, e.g., oral or gastrointestinal mucositis. Oral and gastrointestinal mucositis is a toxicity of many forms of radiotherapy and chemotherapy. It has a significant impact on health, quality of life and economic outcomes that are associated with treatment. It also indirectly affects the success of antineoplastic therapy by limiting the ability of patients to tolerate optimal tumoricidal treatment. The complex pathogenesis of mucositis has only recently been appreciated and reflects the dynamic interactions of all of the cells and tissue types that comprise the epithelium and submucosa. The identification of the molecular events that lead to treatment-induced mucosal injury has provided targets for mechanistically based interventions to prevent and treat mucositis.

Historically, mucositis was thought to arise solely as a consequence of epithelial injury. It was hypothesized that radiation or chemotherapy nonspecifically targeted the rapidly proliferating cells of the basal epithelium, causing the loss of the ability of the tissue to renew itself. The atrophy, thinning and ulceration of the mucosal epithelium that is associated with mucositis was thought to be a consequence of these events. Furthermore, it was believed that the process was facilitated by trauma and oral microorganisms.

Radiation-induced mucositis was typically recognized as an `outside-in` process, in which DNA strand breaks occurred in oral basal-epithelial cells. Chemotherapy-induced mucositis has mainly been attributed to basal-cell damage that results when drugs permeate to these cells from the submucosal blood supply. A role for saliva-borne chemotherapeutic agents in the induction of mucositis has been also been proposed, but not proven. Chemotherapy-induced mucositis can be further compounded by concomitant myelosuppression.

Radiation- or chemotherapy-induced mucositis is initiated by direct injury to basal epithelial cells and cells in the underlying tissue. DNA-strand breaks can result in cell death or injury. Non-DNA injury is initiated through a variety of mechanisms, some of which are mediated by the generation of reactive oxygen species. Radiation and chemotherapy are effective activators of several injury-producing pathways in endothelia, fibroblasts and epithelia. In these cells, the activation of transcription factors such as nuclear factor-.kappa.B (NF-.kappa.B) and NRF2 leads to the upregulation of genes that modulate the damage response. Immune cells (macrophages) produce pro-inflammatory cytokines, such as tumor-necrosis factor-.alpha. (TNF-.alpha.) and interleukin 6, which causes further tissue injury. These signalling molecules also participate in a positive-feedback loop that amplifies the original effects of radiation and chemotherapy. For example, TNF-.alpha. activates NF-.kappa.B and sphingomyelinase activity in the mucosa, leading to more cell death. In addition, direct and indirect damage to epithelial stem cells results in a loss of renewal capacity. As a result, the epithelium begins to thin and patients start to experience the early symptoms of mucositis.

Mucositis is observed during chemotherapeutic or radiation treatment of many different cancers including head and neck cancer, multiple myeloma, colorectal cancers, Because of the problems caused by mucositis which may preclude further radiation or chemotherapy and also impede nutrition because of the discomfort caused by mucositis during swallowing and digestion

The most common symptoms of mucositis include redness, dryness, or swelling of the mouth, burning or discomfort when eating or drinking, open sores in the mouth and throat, abdominal cramps, and tenderness or rectal redness or ulcers. Essentially mucositis involves the inflammation of the lining of the mouth and digestive tract, and frequently occurs in cancer patients after chemotherapy and radiation therapy. The check, gums, soft plate, oropharynx, top and sides of tongue, and floor of the mouth may be affected, as well as the esophagus and rectal areas. Along with redness and swelling, patients typically experience a strong, burning pain.

Although there are factors that increase the likelihood and severity of mucositis, there is no reliable manner to predict who will be affected. Not only is mucositis more common in elderly patients, the degree of breakdown is often more debilitating. The severity of mucositis tends to be increased if a patient exercises poor oral hygiene or has a compromised nutritional status. A preexisting infection or irritation to the mucous membrane may also result in a more severe case of mucositis.

The types of drug used to treat cancer and the schedule by which they are given may influence the risk of developing mucositis. Doxorubicin and methotrexate, for example, frequently cause mucositis. The chemotherapy agent fluorouracil does not usually severely affect the mucous membranes when administered in small doses over continuous intravenous (IV) infusion. When the schedule is adjusted so that a higher dose is given over a shorter period of time (typically over five days), fluorouracil can cause very severe, painful, dose-limiting cases of mucositis. Patients undergoing treatment with high-dose chemotherapy and bone marrow rescue often develop mucositis.

In addition, mucositis also tends to develop in radiation therapy administered to the oral cavity, or in dosages that exceed 180 cGy per day over a five-day period. Combination therapy, either multiple chemotherapy agents or chemotherapy and radiation therapy to the oral cavity, can increase the incidence of mucositis.

Currently there is no real cure for mucositis, treatment is aimed at prevention and management of symptoms. Mucositis typically resolves a few weeks after treatment as the cells regenerate, and treatment cessation is only occasionally required. In some cases, drug therapy will be altered so that a less toxic agent is given.

Patients at risk for mucositis should be meticulous about their oral hygiene, brushing frequently with a soft toothbrush and flossing carefully with unwaxed dental floss. If bleeding of the gums develops, patients should replace their toothbrushes with soft toothettes or gauze. Dentures should also be cleaned regularly. Patients should be well-hydrated, drinking fluids frequently and rinsing the mouth several times a day. Mouthwashes that contain alcohol or hydrogen peroxide should be avoided as they may dry out the mouth and increase pain. Lips should also be kept moist. Physical irritation to the mouth should be avoided. If time permits, dental problems, such as cavities or ill-fitting dentures, should be resolved with a dentist prior to beginning cancer treatment. Patients are generally more comfortable eating mild, medium-temperature foods. Spicy, acidic, very hot or very cold foods can irritate the mucosa. Tobacco and alcohol should also be avoided.

Hospital personnel and the patients themselves should inspect the mouth frequently to look for signs and symptoms of mucositis. Evidence of mucositis (inflammation, white or yellow shiny mucous membranes developing into red, raw, painful membranes) may be present as early as four days after chemotherapy administration. Sodium bicarbonate mouth rinses are sometimes used to decrease the amount of oral flora and promote comfort, though there is no scientific evidence that this is beneficial. Typically, patients will rinse every few hours with a solution containing 1/2 teaspoon (tsp) salt and 1/2 tsp baking soda in one cup of water.

Pain relief is often required in patients with mucositis. In some cases, rinsing with a mixture of maalox, xylocaine, and diphenhydramine hydrochloride relieves pain. However, because of xylocaine's numbing effects, taste sensation may be altered. Worse, it may reduce the body's natural gag reflex, possibly causing problems with swallowing. Coating agents such as kaopectate and aluminum hydroxide gel may also help relieve symptoms. Rinsing with benzydamine has also shown promise, not only in managing pain, but also in preventing the development of mucositis. More severe pain may require liquid tylenol with codeine, or even intravenous opioid drugs. Patients with severe pain may not be able to eat, and may also require nutritional supplements through an I.V. (intravenous line).

A treatment called cryotherapy has shown promise in patients being treated with fluorouracil administered in the aforementioned five-day, high-dose schedule. Patients continuously swish ice chips in their mouth during the thirty-minute infusion of the drug, causing the blood vessels to constrict, thereby reducing the drug's ability to affect the oral mucosa.

Chamomile and allopurinol mouthwashes have been tried in the past to manage mucositis, but studies have found them to be ineffective. Biologic response modifiers are being evaluated to determine their possible role in managing mucositis. Recent studies using topical antimicrobial lozenges have shown promise as well, but more research is needed.

Therefore, there is a strong need in the art for improved methods of treating and preventing mucositis, both oral and gastrointestinal mucositis, as this condition compromises the efficacy of chemotherapy or radiation cancer treatments as well as adversely affecting the quality of life of cancer patients because of the extreme pain and discomfort caused by this condition.

It has been reported in the literature (Rossi et al., Bone Marrow Transplantation 36:771-779 (2005)) that patients with multiple myeloma receiving chemotherapy (dexamethasone and melphelan) and autologous stem cell transplantation (ASCT) who were in addition administered an anti-IL-6 antibody (BE8) had reduced CRP levels and a significant reduction in fever as well as reduced onset and severity of mucositis. Particularly, the mucositis in the treated patients was a lower grade of toxicity requiring no morphine infusion as compared to patients not receiving the anti-IL-6 antibody. Also, gastrointestinal mucositis symptoms such as diarrhea were reduced and quality of life was improved as evidenced by better oral intake of nutrition and daily activity.

As discussed in this application the inventive anti-IL-6 antibodies and antibody fragments effectively reduce CRP levels, cachexia and fever in treated patients as well as providing for enhanced serum albumin levels and improved coagulation profiles and reduced tendency of thrombosis. These antibodies elicit these activities because of their inhibitory effects on IL-6, an inflammatory cytokine eliciting many biological effects. In addition, based on these observations the inventive anti-IL-6 antibodies may be used to prevent anemia or myelosuppression that may occur during cancer treatment and may be beneficial in treatments including hone marrow or stem cell transplant.

Furthermore, because of the anti-inflammatory effects of the subject antibodies, and their beneficial effects on myelosuppression and anemia, which may otherwise occur during radiotherapy and chemotherapy, it is further anticipated that the subject antibodies may be used to treat or prevent oral and gastrointestinal mucositis, especially mucositis that occurs as a consequence of chemotherapy or radiotherapy regimens.

In this embodiment of the invention anti-IL-6 antibody or antibody fragment will be administered prophylactically to patients at significant risk of developing oral or gastrointestinal mucositis, e.g., because of a chemotherapeutic or radiotherapy regimen that are to undergo, and/or may be administered to patients already exhibiting symptoms of mucositis such as discussed above. The present antibodies because of their ameliorative effects on blood cells and inflammation will promote normal or restore tissue damage in the oral and gastrointestinal mucosa that occurs during mucositis.

Because mucositis is particularly a concern during radiotherapy or chemotherapy of some cancers wherein treatment may affect the mucosa such as head and neck cancer, esophageal cancer, throat cancer, lung cancer, gastrointestinal cancers such as stomach cancer, colorectal cancer, pancreatic cancer, as well as hematological cancers such as multiple myeloma, the present invention particularly includes prevention or treatment of mucositis that may occur in these conditions by administration of anti-IL-6 antibodies according to the invention. In addition, the present invention also embraces prevention or treatment of mucositis in patients receiving chemotherapy or radiotherapy and autologous stem cell or bone marrow transplant such as multiple myeloma and leukemias or lymphomas. It is known that mucositis is a significant concern in such patients.

In another embodiment, this invention pertains to methods of preventing or treating thrombosis in a patient in a state of hypercoagulation, comprising administering to the patient an anti-IL-6 antibody, such as Ab1 or a fragment or variant thereof, whereby the patient's coagulation profile is improved or restored to a normal condition, and optionally monitoring the patient to assess coagulation profile.

In another embodiment this invention relates to the use of anti-IL-6 antibodies according to the invention, such as Ab1 or humanized forms thereof for treating or preventing rheumatoid arthritis in subjects in need thereof. In this application we provide results of clinical data showing safety, pharmacokinetics, and pharmacodynamics for subcutaneous and intravenous administration of a preferred humanized antibody derived from Ab1, also referred to as ALD-518, which humanized antibody contains the variable heavy and light sequences contained in SEQ ID NO:19 and 20 (also shown below). This clinical data further demonstrates that this antibody improves. disease activity in rheumatoid arthritis patients which have been subcutaneously or intravenously administered ALD-518.

TABLE-US-00001 SEQ ID NO: 19 EVQLVESGGGLVQPGGSLRLSCAASGESLSNYYVTWVRQAPGKGLEW VGIIYGSDETAYATSAIGRFTISRDNSICNTLYLQMNSLRAEDTAVY YCARDDSSDWDAKFNL SEQ_ID_NO_20 IQMTQSPSSLSASVGDRVTITCQASQSINNELSWYQQKPGICAPKLL IYRASTLASGVPSRFSGSGSGTDFTLTISSLQPDDFATYYCQQGYSL RNIDNA

This application provides data establishing that anti-IL-6 antibody ALD518 was well tolerated when administered in a single SC dose; injection site reactions were generally mild. The bioavailability of SC ALD518 was .about.60% of IV ALD518, and the half life was .about.30 days. Rapid and significant reductions in CRP (C-reactive protein) were observed, which were sustained over 24 weeks of assessment.

The half-life of ALD518 when administered subcutaneously (approximately 30 days) is similar to the half-life previously observed with IV administration. Additionally, subcutaneous ALD518 led to rapid and large reductions in scrum CRP and the reductions in CRP observed during the first 12 weeks of the study were sustained over 24 weeks of assessment. These results are also similar to those observed with IV administration. Together, these results support the use of ALD518 for the treatment of RA, as well as prevention or treatment of other IL-6 associated conditions as described herein. These therapeutic regimens may be combined with other RA therapeutics, including methotrexate or other RA drugs identified herein and generally known in the art.

In another aspect this invention provides specific dosage regimens and dosage formulations for treating rheumatoid arthritis by subcutaneous or intravenous administration of anti-IL-6 antibodies or antibody fragments according to the invention such as humanized Ab1 antibodies.

In another aspect the invention provides novel pharmaceutical compositions and their use in novel combination therapies and comprising administration of an anti-IL-6 antibody, such as Ab1 or a fragment or variant thereof, and at least one other therapeutic compound such as a statin, anti-coagulant, anti-emetic, anti-nausea agent, anti-cachexia agent, chemotherapy agent, anti-cytokine agent, etc.

Weight loss, fatigue, and muscular weakness are very common symptoms of patients with advanced forms of cancer, and these symptoms can worsen as the cancer continues to progress. Fatigue, weight loss and muscular weakness can have significant negative effects on the recovery of patients with advanced forms of cancer, for example by disrupting lifestyles and relationships and affecting the willingness or ability of patients to continue cancer treatments. Known methods of addressing fatigue, weight loss and muscular weakness include regular routines of fitness and exercise, methods of conserving the patient's energy, and treatments that address anemia-induced fatigue and muscular weakness. Nevertheless, there remains a need in the art for methods and/or treatments that improve fatigue, weight loss and muscular weakness in cancer patients.

Thrombosis is a significant cause of mortality in cancer patients. Bick, N Engl J Med 349:109-111 (2003). For example, serious, life-threatening thrombotic events occur in approximately 6% of lung cancer patients. Alguire et al., J Clin Oncol 2004 Vol 22 (July 15th Supplement) No. 14S: 8082. Cancer patients often exhibit hypercoagulation, in which the coagulation system has an increased clotting tendency. Rickles and Edwards, Blood 62:14-31 (1983). Markers of hypercoagulation correlate with poor patient outcome for at least some cancers. Bick, Semin Thromb Hemostat 18:353-372 (1992); Buccheri et al., Cancer 97:3044-3052 (2003); Wojtukiewiez, Blood Coagul Fibrinolysis 3:429-437 (1992). Causes of hypercoagulation include the cancer itself and the cancer treatments (e.g., chemotherapy). Hypercoagulation results in an increased risk of thrombotic events, which can be further exacerbated when patients become bed-ridden. When not contraindicated, anticoagulant therapy has conferred survival benefit in some cancers. Lebeau et al., Cancer 74:38-45 (1994); Chahinian et al., J Clin Oncol 7:993-1002 (1989). However, therapeutic options are often limited because many cancer patients are at an elevated risk of major bleeding, precluding administration of anticoagulants that could otherwise be given prophylactically to reduce the risk of thrombosis. In summary, the available methods for prevention of thrombosis in cancer patients are unsatisfactory, and thus there is a need for new therapies. Such therapies would enhance cancer patient survival and promote better quality of life.

Thrombosis can also be a significant cause of adverse events and mortality in other patient groups, including those with chronic illness or chronic inflammation, surgical patients, bed-ridden individuals, and orthopedic patients. When they are not otherwise contraindicated, preventative methods include calf compression and anticoagulants (e.g. low molecular weight heparin). These preventative methods can reduce--but not eliminate--the risk of thrombosis. Because these preventative methods are not always effective and are contraindicated for some patients, and because anticoagulants can cause potentially lethal side-effects such as major bleeding, there is a need for alternative methods to prevent thrombosis in these patients. Such methods should improve patient outcomes.

Interleukin-6 (hereinafter "IL-6") (also known as interferon-.beta..sub.2; B-cell differentiation factor; B-cell stimulatory factor-2; hepatocyte stimulatory factor; hybridoma growth factor; and plasmacytoma growth factor) is a multifunctional cytokine involved in numerous biological processes such as the regulation of the acute inflammatory response, the modulation of specific immune responses including B- and T-cell differentiation, bone metabolism, thrombopoiesis, epidermal proliferation, menses, neuronal cell differentiation, neuroprotection, aging, cancer, and the inflammatory reaction occurring in Alzheimer's disease. See A. Papassotiropoulos et al, Neurobiology of Aging, 22:863-871 (2001).

IL-6 is a member of a family of cytokines that promote cellular responses through a receptor complex consisting of at least one subunit of the signal-transducing glycoprotein gp130 and the IL-6 receptor ("IL-6R") (also known as gp80). The IL-6R may also be present in a soluble form ("sIL-6R"). IL-6 binds to IL-6R, which then dimerizes the signal-transducing receptor gp130. See Jones, S A, J. Immunology, 175:3463-3468 (2005).

In humans, the gene encoding IL-6 is organized in five exons and four introns, and maps to the short arm of chromosome 7 at 7p21. Translation of IL-6 RNA and post-translational processing result in the formation of a 21 to 28 kDa protein with 184 amino acids in its mature form. See A. Papassotiropoulos, et al, Neurobiology of Aging, 22:863-871 (2001).

As set forth in greater detail herein IL-6 is believed to play a role in the development of a multitude of diseases and disorders, including but not limited to fatigue, cachexia, autoimmune diseases, diseases of the skeletal system, cancer, heart disease, obesity, diabetes, asthma, Alzheimer's disease and multiple sclerosis. Due to the perceived involvement of IL-6 in a wide range of diseases and disorders, there remains a need in the art for compositions and methods useful for preventing or treating diseases associated with IL-6, as well as methods of screening to identify patients having diseases or disorders associated with IL-6. Particularly preferred anti-IL-6 compositions are those having minimal or minimizing adverse reactions when administered to the patient. Compositions or methods that reduce or inhibit diseases or disorders associated with IL-6 are beneficial to the patient in need thereof:

The function of IL-6 is not restricted to the immune response as it acts in hematopoiesis, thrombopoiesis, osteoclast formation, elicitation of hepatic acute phase response resulting in the elevation of C-reactive protein (CRP) and scrum amyloid A (SAA) protein. It is known to be a growth factor for epidermal keratinocytes, renal mesangial cells, myeloma and plasmacytoma cells (Grossman et al., 1989 Prot Natl Acad Sci., 86, (16) 6367-6371; Horii et al., 1989, J Immunol, 143, 12, 3949-3955; Kawano et al., 1988, Nature 332, 6159, 83-85). IL-6 is produced by a wide range of cell types including monocytes/macrophages, fibroblasts, epidermal keratinocytes, vascular endothelial cells, renal messangial cells, glial cells, condrocytes, T and B-cells and some tumor cells (Akira et al, 1990, FASEB J., 4, 11, 2860-2867). Except for tumor cells that constitutively produce IL-6, normal cells do not express IL-6 unless appropriately stimulated.

Elevated IL-6 levels have been observed in many types of cancer, including breast cancer, leukemia, ovarian cancer, prostate cancer, pancreatic cancer, lymphoma, lung cancer, renal cell carcinoma, colorectal cancer, and multiple myeloma (e.g., Chopra er at, 2004, MJAFI 60:45-49; Songur et al., 2004, Tumori 90:196-200; Blay et al., 1992, Cancer Research 52:3317-3322; Nikiteas et al., 2005, World J. Gasterenterol. 11:1639-1643; reviewed in Heikkila et al., 2008, Eur J Cancer, 44:937-945). As noted above, IL-6 is known or suspected to play a role in promoting proliferation or survival of at least some types of cancer. Moreover, some of these studies have demonstrated correlation between IL-6 levels and patient outcome. Together, these results suggest the possibility that inhibition of IL-6 can be therapeutically beneficial. Indeed, clinical studies (reviewed in Trikha et al., 2003, Clinical Cancer Research 9:4653-4665) have shown some improvement in patient outcomes due to administration of various anti-IL-6 antibodies, particularly in those cancers in which IL-6 plays a direct role promoting cancer cell proliferation or survival.

As noted above, IL-6 stimulates the hepatic acute phase response, resulting in increased production of CRP and elevated serum CRP levels. For this reason, C-reactive protein (CRP) has been reported to comprise a surrogate marker of IL-6 activity. Thus, elevated IL-6 activity can be detected through measurement of scrum CRP. Conversely, effective suppression of IL-6 activity, e.g., through administration of a neutralizing anti-IL-6 antibody, can be detected by the resulting decrease in serum CRY levels.

A recent clinical trial demonstrated that administration of rosuvastatin to apparently healthy individuals having elevated CRP (greater than 2.0 mg/l) reduced their CRP levels by 37% and greatly decreased the incidence of myocardial infarction, stroke, arterial revascularization, hospitalization for unstable angina, or death from cardiovascular causes. Ridker et al., N Engl J Med. 2008 Nov. 9 [Epub ahead of print].

In addition to its direct role in pathogenesis of some cancers and other diseases, chronically elevated IL-6 levels appear to adversely affect patient well-being and quality of life. For example, elevated IL-6 levels have been reported to be associated with cachexia and fever, and reduced serum albumin. Gauldie et al., 1987, PNAS 84:7251-7253; Heinric et al., 1990, 265:621-636; Zamir et al., 1993, Metabolism 42:204-208; Zamir et al., 1992, Arch Surg, 127:170-174. Inhibition of IL-6 by a neutralizing antibody has been reported to ameliorate fever and cachexia in cancer patients, though improvement in these patients' serum albumin level has not been reported (Emille et al., 1994, Blood, 84:2472-2479; Blay et al., 1992, Cancer Research 52:3317-3322; Bataille et al., 1995, Blood, 86: 685-691).

Numerous studies have suggested that CRP is a valuable prognostic factor in cancer patients, with elevated CRP levels predicting poor outcome. See, e.g., Hefler et al, Clin Cancer Res, 2008 Feb. 1; 14(3):710-4; Nagaoka et al, Liver Int, 2007 October; 27(8):1091-7; Heikkila et al, J Epidemiol Community Health, 2007 September; 61(9):824-33, Review; Hara et al, Anticancer Res, 2007 July-August; 27(4C):3001-4; Polterauer et al, Gynecol Oncol, 2007 October; 107(1):114-7, Epub 2007 Jul. 6; Tingstedt et al, Scand J Gastroenterol, 2007 June; 42(6):754-9; Suh et al, Support Care Cancer, 2007 June; 15(6):613-20, Epub 2007 Jan. 18; Gerhardt et al, World J Gastroenterol, 2006 Sep. 14; 12(34):5495-500; McArdle et al, Urol Int, 2006; 77(2):127-9; Guillem et al, Dis Esophagus, 2005; 18(3):146-50; Brown et al, Cancer, 2005 Jan. 15; 103(2):377-82. Decreased serum albumin (hypoalbuminemia) is also associated with increased morbidity and mortality in many critical illnesses, including cancers (e.g., Vigano et al., Arch Intern Med, 2000 Mar. 27; 160(6):861-8; Hauser et al., Support Care Cancer, 2006 October; 14(10):999-1011; Seve et al., Cancer, 2006 Dec. 1; 107(11):2698-705). The apparent link between hypoalbuminemia and poor patient outcome might suggest that restoring albumin levels through direct albumin infusion could promote patient survival, however, albumin infusion alone has not improved survival of patients with advanced cancer (Demirkazik et al., Proc Am Soc Clin Oncol 21: 2002 (abstr 2892)) or other critically ill patients groups (reviewed in Wilkes et al., Ann Intern Med, 2001 Aug. 7; 135(3):149-64).

The Glasgow Prognostic Score (GPS) is an inflammation-based prognostic score that combines levels of albumin (<35 mg/L=1 point) and CRP (>10 mg/L=1 point) (Forrest et al., Br J Cancer, 2004 May 4; 90(9):1704-6). Since its introduction in 2004, the Glasgow Prognostic Score has already been shown to have prognostic value as a predictor of mortality in numerous cancers, including gastro-esophageal cancer, non-small-cell lung cancer, colorectal cancer, breast cancer, ovarian cancer, bronchogenic cancer, and metastatic renal cancer (Forrest et al., Br J Cancer, 2004 May 4; 90(9):1704-6; Sharma et al., Clin Colorectal Cancer, 2008 September; 7(5):331-7; Sharma et al., Eur J Cancer, 2008 January; 44(2):251-6; McMillan et al., Nutr Cancer, 2001; 41(1-2):64-9; McMillan, Proc Nutr Soc, 2008 August; 67(3):257-62; Ramsey et al., Cancer, 2007 Jan. 15; 109(2):205-12).

U.S. patent application publication no. 20080081041 (relating to treatment of cancer using an anti-IL-6 antibody) discloses that since IL-6 is associated with disease activity and since CRP is a surrogate marker of IL-6 activity, sustained suppression of CRP by neutralization of IL-6 by their anti-IL-6 antibody (CNTO 328, Zaki et al., Int J Cancer, 2004 Sep. 10; 111(4):592-5) may be assumed necessary to achieve biological activity. The same patent application indicates that the relationship between IL-6 and CRP in patients with benign and malignant prostate disease was previously examined by McArdle (McArdle et al. 2004 Br J Cancer 91(10):1755-1757). McArdle reportedly found no significant differences between the concentrations of IL-6 and CRP in the patients with benign disease compared with prostate cancer patients, in the cancer patients there was a significant increase in both IL-6 and CRP concentration with increasing tumor grade. The median serum CRP value for the 86 subjects with prostate cancer was 1.8 mg/L. Based thereon the inventors in the above-referenced patent application postulate a proposed dose and schedule wherein 6 mg/kg of an anti-IL-6 antibody (CNTO 328) is administered every 2 weeks and allege that this is likely to achieve sustained suppression of CRP in subjects with metastatic HRPC.

IL-6 signaling is mediated by the Jak-Tyk family of cytoplasmic tyrosine kinases, including JAK1, JAK2, and JAK3 (reviewed in Murray J Immunol. 2007 Mar. 1; 178(5):2623-9). Sivash et al. report abrogation of IL-6-mediated JAK signaling by the cyclopentenone prostaglandin 15d-PGJ.sub.2 in oral squamous carcinoma cells. British Journal of Cancer (2004) 91, 1074-1080. These results suggest that inhibitors JAK1, JAK2, or JAK3 could be employed as antagonists of IL-6.

Ulanova et al. report that inhibition of the nonreceptor protein tyrosine kinase Syk (using siRNA) decreased production of IL-6 by epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2005 March; 288(3):L497-507. These results suggest that an inhibitor of Syk could be employed as an antagonist of IL-6.

Kedar et al. report that treatment with thalidomide significantly reduced serum levels of CRP and IL-6 to normal or near normal levels in a substantial fraction of renal cell carcinoma patients. Int J Cancer. 2004 Jun. 10; 110(2):260-5. These results suggest that thalidomide, and possibly derivatives thereof, such as lenalidomide, may be useful antagonists of IL-6.

In addition, another published patent application, US 20070292420 teaches a Phase I dose escalating study using an anti-IL-6 (cCLB-8) antibody for treating refractory patients with advanced stage multiple myeloma (N=12) and indicate that this study demonstrated that some patients had disease stabilization. The application also reports that after discontinuation of treatment there was acceleration in the increase of M protein levels, suggesting disease re-bound after the withdrawal of therapy. Anti-IL-6 cCLB-8 antibody inhibited free circulating IL-6.

The application also indicates that this antibody trial resulted in no toxicity (except transient thrombocytopenia in two heavily pretreated patients) or allergic reactions were observed and that C-reactive protein (CRP) decreased below detection level in all patients. Their antibody (cCLB-8 antibody) reportedly possessed a circulating half-life of 17.8 days, and that there was no human anti-chimeric antibody (HACA) immune response observed (van Zaanen et al. 1998). They allege that the administration of CNTO 328 did not cause changes in blood pressure, pulse rate, temperature, hemoglobin, liver functions and renal functions. Except for transient thrombocytopenia in two heavily pretreated patients, no toxicity or allergic reactions allegedly were observed, and there was no human anti-chimeric antibody (HACA) immune response observed. Three patients in their study reportedly developed infection-related complications during therapy, however, a possible relation with anti-IL-6 cCLB-8 antibody was concluded by the inventors to be unlikely because infectious complications are reportedly common in end stage multiple myeloma and are a major cause of death. They conclude based on their results that this anti-IL-6 cCLB-8 antibody was safe in multiple myeloma patients.

Certain of the anti-IL-6 antibodies disclosed herein have also been disclosed in the following published and unpublished patent applications, which are co-owned by the assignee of the present application: U.S. 2009/0028784, WO 2008/144763, U.S. Ser. No. 12/391,717 filed Feb. 24, 2009, and U.S. Ser. No. 12/366,567 filed Feb. 5, 2009.

Other anti-IL-6 antibodies have been disclosed in the following U.S. patents and published patent applications: U.S. Pat. Nos. 7,482,436; 7,291,721; 6,121,423; 2008/0075726; 2007/0178098; 2007/0154481; 2006/0257407; and 2006/0188502.

As noted above, elevated IL-6 has been implicated in pathogenesis of cachexia, weakness, fatigue, and fever. Diseases and disorders associated with fatigue include, but are not limited to, general fatigue, stress-related fatigue, exercise-induced fatigue, cancer-related fatigue, inflammatory disease-related fatigue and chronic fatigue syndrome. See, for example, Esper D H, et al, The cancer cachexia syndrome: a review of metabolic and clinical manifestations, Nutr Clin Pract., 2005 August; 20 (4):369-76; Vgontzas A N, et al., IL-6 and its circadian secretion in humans, Neuroimmunomodulation, 2005; 12(3):131-40; Robson-Ansley, P J, et al, Acute interleukin-6 administration impairs athletic performance in healthy, trained male runners, Can J Appl Physiol., 2004 August; 29(4):411-8; Shephard R J., Cytokine responses to physical activity, with particular reference to IL-6: sources, actions, and clinical implications, Crit Rev Immunol., 2002; 22(3):165-82; Arnold, M C, et al, Using an interleukin-6 challenge to evaluate neuropsychological performance in chronic fatigue syndrome, Psychol Med., 2002 August; 32(6):1075-89; Kurzrock R., The role of cytokines in cancer-related fatigue, Cancer, 2001 Sep. 15; 92(6 Suppl):1684-8; Nishimoto N, et al, Improvement in Castleman's disease by humanized anti-interleukin-6 receptor antibody therapy, Blood, 2000 Jan. 1; 95 (1):56-61; Vgontzas A N, et al, Circadian interleukin-6 secretion and quantity and depth of sleep, J Clin Endocrinol Metab., 1999 August; 84(8):2603-7; and Spath-Schwalbe E, et al, Acute effects of recombinant human interleukin 6 on endocrine and central nervous sleep functions in healthy men, J Clin Endocrinol Metab., 1998 May; 83(5):1573-9; the disclosures of each of which are herein incorporated by reference in their entireties.

Diseases and disorders associated with cachexia include, but are not limited to, cancer-related cachexia, cardiac-related cachexia, respiratory-related cachexia, renal-related cachexia and age-related cachexia. See, for example, Barton, B E., Interleukin-6 and new strategies for the treatment of cancer, hyperproliferative diseases and paraneoplastic syndromes, Expert Opin Ther Targets, 2005 August; 9(4):737-52; Zaki M H, et al, CNTO 328, a monoclonal antibody to IL-6, inhibits human tumor-induced cachexia in nude mice, Int J Cancer, 2004 Sep. 10; 111(4):592-5; Trikha M, et al, Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence, Clin Cancer Res., 2003 Oct. 15; 9(13):4653-65; Lelli G, et al, Treatment of the cancer anorexia-cachexia syndrome: a critical reappraisal, J Chemother., 2003 June; 15(3):220-5; Argiles J M, et al., Cytokines in the pathogenesis of cancer cachexia, Curr Opin Clin Nutr Metab Care, 2003 July; 6(4):401-6; Barton B E., IL-6-like cytokines and cancer cachexia: consequences of chronic inflammation, Immunol Res., 2001; 23(1):41-58; Yamashita J I, et al., Medroxyprogesterone acetate and cancer cachexia: interleukin-6 involvement, Breast Cancer, 2000; 7(2):130-5; Yeh S S, et al, Geriatric cachexia: the role of cytokines, Am J Clin Nutr., 1999 August; 70(2):183-97; Strassmann G, et al, Inhibition of experimental cancer cachexia by anti-cytokine and anti-cytokine-receptor therapy, Cytokines Mol Ther., 1995 June; 1(2):107-13; Fujita J, et al, Anti-interleukin-6 receptor antibody prevents muscle atrophy in colon-26 adenocarcinoma-bearing mice with modulation of lysosomal and ATP-ubiquitin-dependent proteolytic pathways, hit J Cancer, 1996 Nov. 27; 68(5):637-43; Tsujinaka T, et al, Interleukin 6 receptor antibody inhibits muscle atrophy and modulates proteolytic systems in interleukin 6 transgenic mice, J Clin Invest., 1996 Jan. 1; 97(1):244-9; Emilie D, et al, Administration of an anti-interleukin-6 monoclonal antibody to patients with acquired immunodeficiency syndrome and lymphoma: effect on lymphoma growth and on B clinical Symptoms, Blood, 1994 Oct. 15; 84 (8):2472-9; and Strassmann G, et al., Evidence for the involvement of interleukin 6 in experimental cancer cachexia, J Clin Invest., 1992 May; 89(5):1681-4; the disclosures of each of which are herein incorporated by reference in their entireties.

Another cachexia-related disease is failure to thrive, also known as faltering growth, in which a child exhibits a rate of weight gain less than expected. Failure to thrive is typically defined as weight below the third percentile or a decrease in the percentile rank of 2 major growth parameters in a short period. Failure to thrive results from heterogeneous medical and psychosocial causes, and the cause sometimes eludes diagnosis. One recent study (totaling 34 patients) reported a statistically significant elevation in IL-6 levels in patients diagnosed with failure to thrive. Shaoul et al. J Pediatr Gastroenterol Nutr., 2003 October; 37(4):487-91.

BRIEF SUMMARY OF THE INVENTION

The present invention is an extension of Applicants' previous invention which is directed to specific antibodies, humanized or chimeric or single chain antibodies and fragments and variants thereof having binding specificity for IL-6, in particular antibodies having specific epitopic specificity and/or functional properties and novel therapies using these and other anti-IL-6 antibodies. One embodiment of the invention encompasses specific humanized antibodies and fragments and variants thereof capable of binding to IL-6 and/or the IL-6/IL-61& complex. These antibodies may bind soluble IL-6 or cell surface expressed IL-6. Also, these antibodies may inhibit the formation or the biological effects of one or more of IL-6, IL-6/IL-6R complexes, IL-6/IL-6R/gp130 complexes and/or multimers of IL-6/IL-6R/gp130. The present invention relates to novel therapies and therapeutic protocols using anti-IL-6 antibodies, preferably those described herein. In particular, the present invention pertains to methods of preventing or treating thrombosis in a patient in need thereof, e.g., a patient showing elevated D-dimer and/or CRP levels prior to treatment, comprising administering to the patient an IL-6 antagonist, such as those identified infra, e.g., an anti-IL-6 antibody (such as Ab1) or antibody fragment or variant thereof, whereby the patient's coagulation profile is improved or restored to a normal condition. In some embodiments these methods may further include the administration of other actives such as statins that may further help (synergize) with the IL-6 antagonist such as Ab1 and thereby more effectively treat or prevent thrombosis.

The present invention also pertains to methods of improving survivability or quality of life of a patient in need thereof, e.g., a patient showing elevated CRP levels and/or lowered albumin levels, comprising administering to the patient an IL-6 antagonist, such as those identified infra, e.g., an anti-IL-6 antibody (e.g., Ab1) or antibody fragment or variant thereof, whereby the patient's C-reactive protein ("CRP") level is lowered, and/or the patient's albumin level is raised. In some embodiments these methods may further include the administration of other actives such as statins that may further help (synergize) with the IL-6 antagonist such as Ab1 and thereby more effectively treat the patient.

Another embodiment of the invention relates to Ab1, including rabbit and humanized forms thereof, as well as heavy chains, light chains, fragments, variants, and CDRs thereof. In the human clinical trial data presented, a humanized form of Ab1 was administered.

In a preferred embodiment this is effected by the administration of the antibodies described herein, comprising the sequences of the V.sub.H, V.sub.L and CDR polypeptides described herein, or humanized or chimeric or single chain versions thereof containing one or more of the CDRs of the exemplified anti-IL-6 antibody sequences and the polynucleotides encoding them. Preferably these antibodies will be aglycosylated. In more specific embodiments of the invention these antibodies will block gp130 activation and/or possess binding affinities (Kids) less than 50 picomolar and/or K.sub.off values less than or equal to 10.sup.-4 S.sup.-1.

In another embodiment of the invention these antibodies and humanized versions will be derived from rabbit immune cells (B lymphocytes) and may be selected based on their homology (sequence identity) to human germ line sequences. These antibodies may require minimal or no sequence modifications, thereby facilitating retention of functional properties after humanization. In exemplary embodiments these humanized antibodies will comprise human frameworks which are highly homologous (possess high level of sequence identity) to that of a parent (e.g. rabbit) antibody as described infra.

In another embodiment of the invention the subject antibodies may be selected based on their activity in functional assays such as IL-6 driven T1165 proliferation assays, IL-6 simulated HepG2 haptoglobin production assays, and the like. A further embodiment of the invention is directed to fragments from anti-IL-6 antibodies encompassing V.sub.11, V.sub.L and CDR polypeptides or variants or fragments thereof, e.g., derived from rabbit immune cells and the polynucleotides encoding the same, as well as the use of these antibody fragments and the polynucleotides encoding them in the creation of novel antibodies and polypeptide compositions capable of recognizing IL-6 and/or IL-6/IL-6R complexes or IL-6/IL-6R/gp130 complexes and/or multimers thereof.

The invention also contemplates the administration of conjugates of anti-IL-6 antibodies and humanized, chimeric or single chain versions thereof and other binding fragments and variants thereof conjugated to one or more functional or detectable moieties. The invention also contemplates methods of making said humanized anti-IL-6 or anti-IL-6/IL-6R complex antibodies and binding fragments and variants thereof. In one embodiment, binding fragments include, but are not limited to, Fab, Fab', F(ab').sub.2, Fv and scFv fragments.

Embodiments of the invention pertain to the use of anti-IL-6 antibodies for the diagnosis, assessment and treatment of diseases and disorders associated with IL-6 or aberrant expression thereof. The invention also contemplates the use of fragments or variants of anti-IL-6 antibodies for the diagnosis, assessment and treatment of diseases and disorders associated with IL-6 or aberrant expression thereof. Preferred usages of the subject antibodies, especially humanized, chimeric and single chain antibodies are the treatment and prevention of cancer associated fatigue, and/or cachexia and rheumatoid arthritis.

Other embodiments of the invention relate to the production of anti-IL-6 antibodies in recombinant host cells, preferably diploid yeast such as diploid Pichia and other yeast strains.

In another embodiment the present invention also relates to the use of anti-IL-6 antibodies and antibody fragments according to the invention for preventing or alleviating the onset of graft-versus-host disease (GVHD), or leukemia relapse in subjects receiving transplanted cells, tissues or organs such as subjects receiving hematopoietic stem cell transplants (HCTs), bone marrow transplants (BMTs) and other transplanted cells, tissues or organs, especially transplanted cells, tissues or organs, especially wherein the transplant may contain dendritic cells, especially BDCAA4+ plasmacytoid dendritic cells.

It has been reported in the literature (Perez-Martinez et al., "Blood dendritic cells suppress NK cell function and increase the risk of leukemia relapse after hematopoietic cell transplantation", Biology of Blood and Marrow Transplantation, Available online 25 October 2010) that leukemic subjects receiving transplanted HCTs containing greater numbers of BDCAA4+ plasmacytoid dendritic cells (as well as BDCA1+ myeloid dendritic cells) exhibit a higher propensity to leukemia relapse and exhibit poorer survival. These transplant subjects typically exhibit an inflammatory environment characterized by abundant pathogen associated molecular patterns (PAMPS) derived from endogenous pathogens and host tissues as a consequence of tissues damaged by high-dose chemotherapy and radiation (as a result of disease treatment, such as cancer prior to the need for transplant).

Particularly, the authors explain that while NK cells normally induce DC maturation and the DCs in turn increase the expression of activating markers in NK cells that paradoxically both BDCAA4+ plasmacytoid dendritic cells and BDCA1 myeloid dendritic cells suppressed the function of NK cells in both in vitro assays and in vivo mouse models when TLR ligands were used to mimic the microbe-associated inflammatory environment in allogeneic HCT. They theorize that this phenomena may explain why patients who received HCTS containing greater numbers of these cells had a high risk of leukemia relapse. They further teach that detailed mechanistic findings suggest that these dendritic cells elicit this inhibitory effect on NK cytotoxicity cells through IL-10 and IL-6 (as incubation of NK cells with these cytokines has a dose-dependent suppressive effect on NK cell cytotoxicity).

Based on these findings, and the potent ability of antibodies according to the invention to suppress IL-6 production in vitro and in vivo the present invention provides methods and compositions for preventing leukemia relapse, or graft versus host disease, by the use of an anti-IL-6 antibody or antibody fragment according to the invention as an adjunct to therapies wherein transplanted cells, tissues or organs are used. Most particularly, the invention provides methods of reducing or preventing GVHD, or leukemia relapse in patients receiving bone marrow transplants, hematopoietic cell transplants, pancreatic or liver transplants, and other cell, tissue and organ transplants wherein the transplant may comprise dendritic cells, especially BDCAA4+ plasmacytoid dendritic cells and/or BDCA1+ myeloid dendritic cells.

The present invention is especially suitable for treating transplant patients already prone to having an inflammatory milieu, such as subjects who have already undergone or are still undergoing chemotherapy and/or radiation. Essentially, the subject anti-IL-6 antibodies and antibody fragments will act to suppress already high IL-6 levels in these transplant recipients and thereby help to alleviate the undesired effect of such dendritic cells on NK cells. This is clinically advantageous as NK cells play an important role in hematopoietic stem cell transplantation and in cross talk with dendritic cells to induce primary responses against infection. Also, it has been demonstrated that donor NK cells may promote engraftment, prevent GVHD, control infections, and reduce the risk of leukemia relapse.

Accordingly, based on the foregoing the present invention provides methods of promoting transplant engraftment, controlling or reducing the risk of infection, and/or reducing or preventing GVHD, and/or leukemia relapse in a subject receiving transplanted cells, tissues or organs by administering prior, concurrent of after transplant at least one anti-IL-6 antibody or antibody fragment according to the invention. In preferred embodiments these subjects will comprise individuals who have cancer, and/or subjects who have already received a therapeutic regimen or have an underlying condition that results in an endogenous inflammatory milieu such as subjects who have received chemotherapy or radiation prior to transplant.

The subject therapy will typically administer the antibody prior or concurrent to transplant, e.g. on the order of from about a month, several weeks, or a week prior to transplant so as to reduce circulating levels of IL-6 antibody when transplant is effected. However, alternatively the subject anti-IL-6 antibodies or antibody fragments may be administered concurrent to the transplanted cell, tissues or organ or shortly thereafter, e.g. preferably within several hours or days of transplant. If these moieties are administered concurrently the IL-6 antibody or antibody fragment may be combined with the transplanted cells, tissues or organ or they may be administered in separate medicament compositions.

In some instances, e.g., in the case of hematopoietic stem cell or bone marrow transplants it may be desirable to contact the cells, tissue or organ prior to transplant with an anti-IL-6 antibody or antibody fragment according to the invention s as to suppress the production of IL-6 by any dendritic cells contained therein prior to transplantation.

In addition, it may be further desirable to further administer to the subject or pretreat the cells, tissue or organ prior to transplant with an IL-10 antagonist, e.g., an anti-IL-10 antibody or antibody fragment.

The present invention therefore further provides compositions containing at least one anti-IL-6 antibody or antibody fragment according to the invention in association with cells, tissues or an organ which is to be transplanted and further optionally also including at least one IL-10 antagonist.

The invention also provides methods of reducing the risk of infection in subjects receiving transplanted cells, tissues or organs, especially those potentially containing dendritic cells by administering prior, concurrent or after transplant an amount of at least one anti-IL-6 antibody or antibody fragment according to the invention sufficient to prevent or reduce the risk of infection.

The invention also provides methods of reducing the risk of GVHD in subjects receiving transplanted cells, tissues or organs, especially those potentially containing dendritic cells by administering to a patient prior, concurrent or after transplant, e.g., BMT or HCT, an amount of at least one anti-IL-6 antibody or antibody fragment according to the invention sufficient to prevent or reduce the risk of GVHD. In some embodiments these subjects will have received chemotherapy and/or radiation or such chemotherapy and/or radiation may be ongoing.

The invention also provides methods of reducing the risk of leukemia relapse in leukemia subjects receiving transplanted cells, tissues or organs, especially those potentially containing dendritic cells by administering prior, concurrent or after transplant an amount of at least one anti-IL-6 antibody or antibody fragment according to the invention sufficient to prevent or reduce the risk of leukemia relapse. Examples of such leukemias include Chronic Leukemias, Acute Leukemias such as Myelogenous Leukemia which is a disease that develops from myeloid cells and can either be chronic or acute, referred as chronic myelogenous leukemia (CML), or acute myelogenous leukemia (AML), Lymphocytic Leukemia which develops from cells called lymphoblasts or lymphocytes in the blood marrow and which disease similarly can be acute or chronic, referred as chronic lymphocytic leukemia (CLL) or acute lymphocytic leukemia (ALL), hairy cell leukemia, T cell prolymphcytic leukemia, (T-PLL) which is a very rare and aggressive leukemia affecting adults, large granular lymphocytic leukemia which disease may involve either T-cells or NK cells which like hairy cell leukemia, involves solely B cells, and is a rare and indolent (not aggressive) leukemia.

The present invention also provides methods of reducing the risk of GVHD in subjects receiving transplanted pancreatic or liver cells, tissues or organs, especially those potentially containing dendritic cells by administering prior, concurrent or after transplant an amount of at least one anti-IL-6 antibody or antibody fragment according to the invention sufficient to prevent or reduce the risk of GVHD.

The present invention also relates to the use of the subject anti-IL-6 antibodies and antibody fragments for the treatment of specific cancers in combination with chemotherapeutics, preferably EGFR inhibitors, and/or radiation wherein this combination is administered using a dosage regimen whereby the anti-IL-6 antibody or anti-IL-6 antibody fragment renders the cancer cells more sensitive to the action of the chemotherapeutic or radiation. These methods in particular include treatment of any cancer, especially cancers wherein an EGFR inhibitor is useful for treatment of cancer. Non-limiting examples thereof include advanced and non-advanced cancers including metastasized cancers such as metastatic and non-metastatic lung cancer, breast cancer, head and neck cancer, (HNSCC), pancreatic cancer, pharyngeal cancer, colorectal cancer, anal cancer, glioblastoma multiforme, epithelial cancers, renal cell carcinomas, acute or chronic myelogenous leukemia and other leukemias.

With respect to this embodiment of the invention it has been reported in the literature that IL-6 upregulation contributes to the resistance of some cancers to chemotherapeutics such as EGFR inhibitors and that this resistance involves elevated IL-6 at the site of the cancer. For example, Yao et al., Proc. Natl. Acad. Sci., USA, PNAS Aug. 31, 2010 vol. 107 No. 35 15535-15540 teach that IL-6 is expressed at high levels in erlotinib-resistant lung cancer cells and is required for their survival.

Also, Otero et al., J Immunol. 177:6593-7 (2006) report that IL-6 may play a role in acquired resistance to radiation-induced apoptosis of B cells. Further, Sriuranpong et al., Cancer Research 63:2948-2956 (2003) disclosed that the EGFR-independent constitutive activation of STAT3 in head and neck cancer carcinoma involves IL-6/gp130 signaling and that this activation may confer both proliferative and survival potential of these cancer cells. Still further, Chen et al., Int. J. Rad. Oncol. Biol. Phys. 76(4):1214-1224 (2010) reported the importance of IL-6 signaling in the resistance of pharyngeal cancer to irradiation and to EGFR inhibitors.

In addition an earlier study Gao et al. (2007) "Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas", J Clin Invest 117:3846-38569); and the authors showed that NSCLC cells expressing mutant EGFR are dependent on the IL-6 axis for their long-term proliferation and survival.

More particularly, Yao et al. (Id) showed that the reduction of the level of IL-6 by siRNA as well as inhibition of the IL-6 axis by means of an IL-6 neutralizing antibody or a JAK1/2 inhibitor not only significantly decreased IL-6-mediated signaling but also affected cell viability and revealed that IL-6 was sufficient for modifying the sensitivity of cancer cells to the EGFR inhibitor erlotinib. They showed this by measuring the effect of IL-6 on the viability of multiple NSCLC cell lines (HCC827, PC9, and HCC4006) that express mutant EGFR. They found that likely as a consequence of the accumulation of different genetic and epigenetic abnormalities, these cell lines, despite harboring somatic-activating EGFR mutations, displayed different erlotinib sensitivities with IC50s ranging from 5 .mu.M in the case of H1650 to 0.001 .mu.M in the case of HCC827. Despite these differences, in all cases the presence of IL-6 in the medium was sufficient to diminish the sensitivity of various cell lines to erlotinib. They further observed teach that IL-6 treatment did not substantially affect the cell-proliferation rates but rather, decreased their apoptotic response and that the effect of IL-6 was caused by the activation of the gp130-STAT3 axis and not a decreased bioavailability of erlotinib. Based on these results they hypothesized a tumor model in which paracrine or autocrine stimulation of the TGF-.beta.l axis (and increased IL-6 production) is sufficient for acquisition of mesenchymal-like morphology, increased motility and invasion ability, and increased erlotinib resistance.

Others have also reported the effects of increased IL-6 levels on the resistance of tumors to EGFR inhibitors. For example, Nishioka et al., in Leukemia (2009) 23:2304-2308 teach that AML cell lines acquire drug resistance to receptor tyrosine kinases such as sunitibib and imatinib, apparently because of aberrantly secretion of inflammatory cytokines such as IL-6 and further show that treatment of these cells with IL-6 blunted the efficacy of these compounds against these cancer cell lines. In addition they disclose that a humanized antibody against the IL-6 receptor, tocilizumab, or AG490 blocked JAK2/STAT5 signaling and restored the sensitivity of the cells to sunitinib.

Therefore, based on the potent IL-6 inhibitory properties of anti-IL-6 antibodies and antibody fragments according to the invention, the present invention in another embodiment relates to treatment regimens using chemotherapeutics and/or radiation whereby resistance against the chemotherapeutic or radiation may involves increased IL-6 production at the tumor site, and whereby this resistance is blocked or inhibited by administering the chemotherapeutic and/or radiation in association with an anti-IL-6 antibody or antibody fragment according to the invention. In particular such chemotherapeutics include EGFR inhibitors as it has been reported that cancers may become resistant to these drugs based on increased IL-6 levels at the tumor site, likely as a consequence of an inflammatory response elicited as a result of prolonged chemotherapy and/or radiation.

Examples of EGFR inhibitors that may be administered in therapeutic regimens with anti-IL-6 antibodies or antibody fragments according to the invention include by way of example Cetuximab (Erbitux) available from ImClone, Erlotinib (Tarceva) available from OSI Pharmaceuticals, Gefitinib (Iressa) available from AstraZeneca, Lapatinib (Tykerb) available from Glaxo, Panitimumab (Vectibox) available from Amgen, Sunitinib or Sutent (N-(2-diethylaminoethyl)-5-[(Z)-(5-fluoro-2-oxo-1H-indol-3-ylidene)methyl- ]-2,4-dimethyl-1H-pyrrole-3-carboxamide) marketed by Pfizer, Gefitinib or N-(3-chloro-4-fluoro-phenyl)-7-methoxy-6-(3-morpholin-4-ylpropoxy)quinazo- lin-4-amine marketed by AstraZeneca, Zalutumumab in clinical development by GenMab, and others.

According to this embodiment of the invention an anti-IL-6 antibody or antibody fragment according to the invention will be administered prior, concurrent or after administration of the chemotherapeutic, e.g., an EGFR inhibitor or radiation. In a preferred embodiment the anti-IL-6 antibody or antibody fragment will be administered to individuals whereby their cancer, e.g., a leukemia such as AML, pharyngeal cancer, or a lung cancer such as nonsmall cell lung cancer (NSCLC) has developed a resistance to the drug, e.g., as a consequence of the inflammatory environment around the cancer resulting in increased IL-6 levels. In addition, the subject IL-6 antibodies may be used to enhance the efficacy of radiation against radiation resistant tumors in instances wherein the tumor resistance similarly involves an inflammatory rumor environment associated with elevated proinflammatory cytokines, and in particular elevated IL-6.

In a preferred embodiment the invention will administer an anti-IL-6 antibody or antibody fragment according to the invention to potentiate the efficacy of an EGFR inhibitor, especially in patients who have developed a resistance or weakened sensitivity of the treated cancer to the drug because of an inflammatory response involving increased IL-6 levels. Specific EGFR inhibitors which may be used in combination with antibodies according to the invention are identified above. In addition, specific examples of FDA-approved EGFR inhibitors and indications and dosage regimens are provided in the table below.

It is anticipated that when these drugs when used in conjunction with the subject anti-IL-6 antibodies or antibody fragments, that the same chemotherapeutic dosage regimens may be used, but with greater cytotoxicity to the cancer cells, based on the sensitizing effect of the IL-6 antibody on the treated cancer cells (because of the antibody's inhibitory effect on IL-6 levels at the site of the cancer or tumor which when elevated "protect" the cancer from the effects of the drug).

TABLE-US-00002 TABLE I FDA-Approved EGFR Inhibitors Initial Drug Approval (Trade name) Class Target Date Indication Dose Cetuximab mAb EGFR February In combination with radiation therapy Intravenous (Erbitux) 2004 for locally or regionally advanced 400 mg/m.sup.2 ImClone, Bristol- HNSCC initial dose then Myers Squibb Recurrent or metastatic HNSCC 250 mg/m.sup.2 progressing after platinum-based weekly therapy Single agent in metastatic CRC (EGFR- expressing) after failure of irinotecan- and oxaliplatin-based regimens Metastatic CRC (EGFR-expressing) in combination with irinotecan for irinotecan-refractory patients Erlotinib TKI EGFR November Second-line therapy in locally advanced Oral (Tarceva) 2004 or metastatic NSCLC 150 mg daily OSI First line, in combination with Pharmaceuticals gemcitabine in locally advanced or metastatic pancreatic cancer Gefitinib TKI EGFR May Monotherapy for the treatment of Oral (Iressa) 2003 patients with advanced or metastatic 250 mg daily AstraZeneca NSCLC who are benefiting or have benefited from gefitinib Lapatinib TKI EGFR/ March In combination with capecitabine for the Oral (Tykerb) HER2 2007 treatment of patients with advanced or 1250 mg daily SmithKline metastatic HER2-overexpressing for 21 days Beecham breast cancer who have received prior then 1 week off treatment with an anthracycline, a taxane, and trastuzumab Panitumumab mAb EGFR September Metastatic colorectal carcinoma Intravenous (Vectibix) 2006 (EGFR-expressing) after treatment with 6 mg/kg every Amgen fluoropyrimidine-, oxaliplatin-, and 14 days irinotecan-containing chemotherapy regimens TKI = tyrosine kinase inhibitor; mAb = monoclonal antibody; NSCLC = non-small-cell lung cancer; HNSCC = squamous cell carcinoma of the head and neck

In a preferred embodiment the treated cancer will be a lung cancer such as a non-small lung cancer e.g., squamous cell carcinoma, large cell carcinoma or adenocarcinoma or a small cell lung cancer such as small cell carcinoma (oat cell cancer) or combined small cell carcinoma. In a particularly preferred embodiment the treated lung cancer will comprise squamous cell carcinoma and the treated patient will be one receiving erlotinib or sunitinib. These patients will include individuals whose tumors have developed a resistance to these drugs after one or more rounds of chemotherapy.

However, as noted above any cancer wherein these EGFR inhibitory drugs are potentially useful is contemplated such as advanced or non-advanced, non-metastatic and metastatic forms of colorectal cancer, pancreatic cancer, breast cancer, head and neck cancer, esophageal cancer, lung cancer, ovarian cancer, cervical cancer, renal cancer, prostate cancer, testicular cancer, brain cancer, and others.

In this embodiment of the invention the subject anti-IL-6 antibodies or antibody fragments will be administered at dosages effective to render the treated tumor more sensitive to the effects of the drug and/or radiation, e.g., dosages ranging from about 25-500 mg, more typically about 120, 160, 240 or 320 mg dosages. The antibody will be administered before, concurrent or after administration of the chemotherapeutic, e.g., from about a month, several weeks or a week prior or after chemotherapy. Preferably the antibody will be administered prior to chemotherapy or radiation in order to render the cancer more sensitive to the effects of the drug or radiation.

As it has been shown that drug resistant cancer cells have a higher invasive or metastatic capacity and reduced apoptosis relative to non-resistant cancer cells, the present invention should further reduce the risk of invasion or metastasis of the cancer cells to other sites and/or potentially reverse or prevent metastasis. Also, the present invention should result in increased apoptosis of the drug resistant cancer cells.

In some instances it may be possible to co-administer the anti-IL-6 antibody or antibody fragment, e.g., in instances wherein the EGFR inhibitor is also a biologic such as an antibody. However, in most instances the antibody and the EGFR inhibitor which may be a biologic or small molecule will be administered in separate compositions, even in instances wherein administration of these moieties is effected con currently. Another embodiment of the invention relates to methods of improving survivability or quality of life of a patient diagnosed with cancer, comprising administering to the patient an anti-IL-6 antibody or antibody fragment or variant thereof, whereby the patient's serum C-reactive protein ("CRP") level is stabilized and preferably reduced, and monitoring the patient to assess the reduction in the patient's scrum CRP level, wherein the anti-IL-6 antibody or antibody fragment or variant thereof may specifically bind to the same linear or conformational epitope(s) and/or compete for binding to the same linear or conformational epitope(s) on an intact human IL-6 polypeptide or antibody fragment or variant thereof as an anti-IL-6 antibody comprising Ab1 and chimeric, humanized, single chain antibodies and fragments thereof (containing one or more CDRs of the afore-identified antibodies) that specifically bind IL-6, which preferably are aglycosylated.

Another embodiment of the invention relates to methods of improving muscular strength in a patient diagnosed with cancer, comprising administering to the patient an anti-IL-6 antibody or antibody fragment or variant thereof, whereby the patient's muscular strength is improved, and monitoring the patient to assess muscular strength, wherein the anti-IL-6 antibody or antibody fragment or variant thereof may specifically bind to the same linear or conformational epitope(s) and/or compete for binding to the same linear or conformational epitope(s) on an intact human IL-6 polypeptide or fragment thereof as an anti-IL-6 antibody comprising Ab1 and chimeric, humanized, single chain antibodies and fragments thereof (containing one or more CDRs of the afore-identified antibodies) that specifically bind IL-6, which preferably are aglycosylated. In such methods preferably the patient's muscular strength is improved by at least about 15% within approximately 4 weeks of administering the anti-IL-6 antibody or antibody fragment or variant thereof, as measured by the Hand Grip Strength test and more preferably the patient's muscular strength is improved by at least about 20% within approximately 4 weeks of administering the anti-IL-6 antibody or antibody fragment or variant thereof, as measured by the Hand Grip Strength test.

Another embodiment of the invention relates to methods of increasing serum albumin in a patient in need thereof, comprising administering to the patient an anti-IL-6 antibody or antibody fragment or variant thereof, whereby the patient's serum albumin level is improved, and monitoring the patient to assess serum albumin level, wherein the anti-IL-6 antibody or antibody fragment or variant thereof may specifically bind to the same linear or conformational epitope(s) and/or compete for binding to the same linear or conformational epitope(s) on an intact human IL-6 polypeptide or antibody fragment or variant thereof as an anti-IL-6 antibody comprising Ab1 and chimeric, humanized, single chain antibodies and fragments thereof (containing one or more CDRs of the afore-identified antibodies) that specifically bind IL-6, which preferably are aglycosylated. Preferably, these methods are effected under conditions whereby the patient's survivability is improved, and/or under conditions wherein the serum albumin level is increased by about 5-10 g/L, preferably 7-8 g/L, within approximately 6 weeks of administering the anti-IL-6 antibody or antibody fragment or variant thereof. These patients will include, without limitation thereto, those diagnosed with rheumatoid arthritis, cancer, advanced cancer, liver disease, renal disease, inflammatory bowel disease, celiac's disease, trauma, burns, other diseases associated with reduced serum albumin, or any combination thereof.

In an embodiment of the invention, the patient may have been diagnosed with rheumatoid arthritis, juvenile rheumatoid arthritis, psoriasis, psoriatic arthropathy, ankylosing spondylitis, systemic lupus erythematosis, Crohn's disease, ulcerative colitis, pemphigus, dermatomyositis, polymyositis, polymyalgia rheumatica, giant cell arteritis, vasculitis, polyarteritis nodosa, Wegener's granulomatosis, Kawasaki disease, isolated CNS vasculitis, Churg-Strauss arteritis, microscopic polyarteritis, microscopic polyangiitis, Henoch-Schonlein purpura, essential cryoglobulinemic vasculitis, rheumatoid vasculitis, cryoglobulinemia, relapsing polychondritis, Behcet's disease, Takayasu's arteritis, ischemic heart disease, stroke, multiple sclerosis, sepsis, vasculitis secondary to viral infection (e.g., hepatitis B, hepatitis C, HIV, cytomegalovirus, Epstein-Barr virus, Parvo B19 virus, etc.), Buerger's Disease, cancer, advanced cancer, Osteoarthritis, systemic sclerosis, CREST syndrome, Reiter's disease, Paget's disease of bone, Sjogren+s syndrome, diabetes type 1, diabetes type 2, familial Mediterranean fever, autoimmune thrombocytopenia, autoimmune hemolytic anemia, autoimmune thyroid diseases, pernicious anemia, vitiligo, alopecia areata, primary biliary cirrhosis, autoimmune chronic active hepatitis, alcoholic cirrhosis, viral hepatitis including hepatitis B and C, other organ specific autoimmune diseases, burns, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, allergic asthma, other allergic conditions or any combination thereof.

In an embodiment of the invention, the patient may have an elevated C-reactive protein (CRP) level prior to treatment.

Another embodiment of the invention relates to methods of improving survivability or quality of life of a patient in need thereof, comprising administering to the patient an IL-6 antagonist such as Ab1, whereby the patient's serum C-reactive protein ("CRP") level is reduced, and monitoring the patient to assess the reduction in the patient's serum CRP level.

Another embodiment of the invention relates to methods of improving survivability or quality of life of a patient in need thereof, comprising administering to the patient an IL-6 antagonist such as Ab1, whereby the patient's serum albumin level is increased, and monitoring the patient to assess the increase in the patient's scrum albumin level.

Another embodiment of the invention relates to methods of improving survivability or quality of life of a patient in need thereof, comprising administering to the patient an IL-6 antagonist such as Ab1, whereby the patient's scrum CRP level is reduced and the patient's serum albumin level is increased, and monitoring the patient to assess the reduction in the patient's serum CRP level and the increase in the patient's scrum albumin level.

Another embodiment of the invention relates to methods of preventing or treating thrombosis in a patient in a state of hypercoagulation, comprising administering to the patient an IL-6 antagonist, e.g. an anti-IL-6 antibody (e.g., Ab1) and chimeric, humanized, single chain antibodies and fragments thereof (containing one or more CDRs of the afore-identified antibodies) that specifically bind IL-6, which preferably are aglycosylated, whereby the patient's coagulation profile is improved or restored to a normal condition, and monitoring the patient to assess coagulation profile. As discussed infra in a preferred exemplary embodiment the anti-IL-6 antibody will comprise a humanized antibody containing the CDRs of Ab1 and more preferably will comprise the variable heavy and light chain in SEQ ID NO: 657 and SEQ ID NO: 709 respectively and the constant regions in SEQ ID NO: 588 and 586 respectively or variants thereof wherein one or more amino acids are modified by substitution or deletion without substantially disrupting IL-6 binding affinity.

In such methods if the IL-6 antagonist is an anti-IL-6 antibody or antibody fragment or variant thereof preferably this antibody may specifically bind to the same linear or conformational epitope(s) and/or compete for binding to the same linear or conformational epitope(s) on an intact human IL-6 polypeptide or fragment thereof as an anti-IL-6 antibody comprising Ab1 and fragments and variants thereof. In the inventive methods of preventing or treating thrombosis, the patient's coagulation profile is assessed by measurement of the patient's serum level of one or more of D-dimer, Factor H, Factor V, Factor VIII, Factor IX, Factor XI, Factor XII, F/fibrin degradation products, thrombin-antithrombin III complex, fibrinogen, plasminogen, prothrombin, and von Willebrand factor and preferably by a method including measuring the patient's scrum D-dimer level prior to administration of the anti-IL-6 antibody, and administering the anti-IL-6 antibody or antibody fragment or variant thereof if the patient's serum D-dimer level is elevated. In addition, the levels of C reactive protein may also be assessed in the patient prior to treatment and, if elevated, this may be used as a further indicator as to an increased risk of thrombosis in the patient.

An embodiment of the invention relates to methods of treating a patient having a disease or condition associated with hypercoagulation, which may comprise administering to the patient an IL-6 antagonist such as Ab1, whereby the patient's coagulation profile is improved or restored to normal, and monitoring the patient to assess coagulation profile.

In an embodiment of the invention, the patient may have elevated serum D-dimer levels prior to treatment.

In an embodiment of the invention, the patient may have a reduced serum albumin level prior to treatment.

In an embodiment of the invention, the patient's Glasgow Prognostic Score (GPS) may be improved following the treatment.

In an embodiment of the invention, the patient may have an elevated serum CRP level prior to treatment.

In an embodiment of the invention, the method may further comprise the administration of at least one statin.

In an embodiment of the invention, the IL-6 antagonist may target IL-6, IL-6 receptor alpha, gp130, p38 MAP kinase, JAK1, JAK2, IMO, SYK, or any combination thereof.

In an embodiment of the invention, the IL-6 antagonist may comprise an antibody, an antibody fragment, a peptide, a glycoalkoid, an antisense nucleic acid, a ribozyme, a retinoid, an avemir, a small molecule, or any combination thereof.

In an embodiment of the invention, the IL-6 antagonist may comprise an anti-IL-6R, anti-gp130, anti-p38 MAP kinase, anti-JAK1, anti-JAK2, anti-IMO, or anti-SYK antibody or antibody fragment.

In one embodiment of the invention, the IL-6 antagonist may comprise a small molecule comprising thalidomide, lenalidomide, or any combination thereof.

In an embodiment of the invention, the antagonist may comprise an anti-IL-6 antibody (e.g., Ab1) or antibody fragment or variant thereof.

In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment or variant thereof may specifically bind to the same linear or conformational epitope(s) and/or compete for binding to the same linear or conformational epitope(s) on an intact human IL-6 polypeptide or fragment thereof as an anti-IL-6 antibody comprising Ab1 and chimeric, humanized, single chain antibodies and fragments thereof (containing one or more CDRs of the afore-identified antibodies) that specifically bind IL-6, which preferably are aglycosylated.

In an embodiment of the invention, the anti-IL-6 antibody may bind to the same linear or conformational epitope(s) and/or compete for binding to the same linear or conformational epitope(s) on an intact human IL-6 polypeptide or a fragment thereof as Ab1.

In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment or variant thereof may specifically bind to the same linear or conformational epitope(s) on an intact human IL-6 polypeptide or fragment thereof as an anti-IL-6 antibody comprising Ab1 and chimeric, humanized, single chain antibodies and fragments thereof (containing one or more CDRs of the afore-identified antibodies) that specifically bind IL-6, which preferably are aglycosylated.

In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment or variant thereof may specifically bind to the same linear or conformational epitope(s) on an intact human IL-6 polypeptide or a fragment thereof as Ab1.

In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment or variant thereof may specifically bind to the same linear or conformational epitopes on an intact IL-6 polypeptide or fragment thereof that is (are) specifically bound by Ab1 and wherein said epitope(s) when ascertained by epitopic mapping using overlapping linear peptide fragments which span the full length of the native human IL-6 polypeptide includes one or more residues comprised in IL-6 fragments selected from those respectively encompassing amino acid residues 37-51, amino acid residues 70-84, amino acid residues 169-183, amino acid residues 31-45 and/or amino acid residues 58-72.

In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment or variant thereof may comprise at least 2 complementarity determining regions (CDRs) in each the variable light and the variable heavy regions which are identical to those contained in an anti-IL-6 antibody comprising Ab1 and chimeric, humanized, single chain antibodies and fragments thereof (containing one or more CDRs of the afore-identified antibodies) that specifically bind IL-6, which preferably are aglycosylated. In certain embodiments, antibodies containing these CDRs may be constructed using appropriate human frameworks based on the humanization methods disclosed herein.

In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment or variant thereof may comprise at least 2 complementarity determining regions (CDRs) in each the variable light and the variable heavy regions which are identical to those contained in Ab1.

In an embodiment of the invention, all of the CDRs in the anti-IL-6 antibody or antibody fragment or variant thereof may be identical to the CDRs contained in an anti-IL-6 antibody comprising Ab1 and chimeric, humanized, single chain antibodies and fragments thereof (containing one or more CDRs of the afore-identified antibodies) that specifically bind IL-6, which preferably are aglycosylated.

In an embodiment of the invention, all of the CDRs in the anti-IL-6 antibody or antibody fragment or variant thereof may be identical to one or more of the CDRs contained in Ab1.

In a preferred exemplary embodiment, the anti-IL-6 antibody will comprise all the CDRs in Ab1. In a more preferred embodiment the anti-IL-6 antibody will comprise the variable heavy and light chain sequences in SEQ ID NO: 657 and SEQ ID NO: 709 (humanized Ab1), or variants thereof.

In a preferred embodiment the humanized anti-IL-6 antibody will comprise the variable heavy and variable light chain sequences respectively contained in SEQ ID NO: 657 and SEQ ID NO: 709, and preferably further comprising the heavy chain and light chain constant regions respectively contained in SEQ ID NO: 588 and SEQ ID NO: 586, and variants thereof comprising one or more amino acid substitutions or deletions that do not substantially affect IL-6 binding and/or desired effector function. This embodiment also contemplates polynucleotides comprising, or alternatively consisting of, one or more of the nucleic acids encoding the variable heavy chain (SEQ ID NO: 700) and variable light chain (SEQ ID NO: 723) sequences and the constant region heavy chain (SEQ ID NO: 589) and constant region light chain (SEQ ID NO: 587) sequences. This embodiment further contemplates nucleic acids encoding variants comprising one or more amino acid substitutions or deletions to the variable heavy and variable light chain sequences respectively contained in SEQ ID NO: 657 and SEQ ID NO: 709 and the heavy chain and light chain constant regions respectively contained in SEQ ID NO: 588 and SEQ ID NO: 586, that do not substantially affect IL-6 binding and/or desired effector function.

In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment or variant thereof may be aglycosylated.

In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment or variant thereof may contain an Fc region that has been modified to alter effector function, half-life, proteolysis, and/or glycosylation. Preferably the Fc region is modified to eliminate glycosylation.

In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment or variant thereof may be a human, humanized, single chain or chimeric antibody.

In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment or variant thereof may be a humanized antibody derived from a rabbit (parent) anti-IL-6 antibody.

In an embodiment of the invention, the framework regions (Fits) in the variable light region and the variable heavy regions of said anti-IL-6 antibody or antibody fragment or variant thereof respectively may be human FRs which are unmodified or which have been modified by the substitution of at most 2 or 3 human FR residues in the variable light or heavy chain region with the corresponding FR residues of the parent rabbit antibody, and the human FRs may have been derived from human variable heavy and light chain antibody sequences which have been selected from a library of human germline antibody sequences based on their high level of homology to the corresponding rabbit variable heavy or light chain regions relative to other human germline antibody sequences contained in the library. As disclosed in detail infra in a preferred embodiment the antibody will comprise human FRs which are selected based on their high level of homology (degree of sequence identity) to that of the parent antibody that is humanized.

In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment or variant thereof may be administered to the patient with a frequency at most once per period of approximately four weeks, approximately eight weeks, approximately twelve weeks, approximately sixteen weeks, approximately twenty weeks, or approximately twenty-four weeks.

In an embodiment of the invention, the patient's coagulation profile may remain improved for an entire period intervening two consecutive anti-IL-6 antibody administrations.

In an embodiment of the invention, the patient's serum CRP level may remain decreased and/or serum albumin level may remain raised for an entire period intervening two consecutive anti-IL-6 antibody administrations.

In an embodiment of the invention, the patient's cachexia, weakness, fatigue, and/or fever may remain improved for an entire period intervening two consecutive anti-IL-6 antibody administrations.

In an embodiment of the invention, the patient may have been diagnosed with cancer selected from Acanthoma, Acinic cell carcinoma, Acoustic neuroma, Acral lentiginous melanoma, Acrospiroma, Acute eosinophilic leukemia, Acute lymphoblastic leukemia, Acute megakaryoblastic leukemia, Acute monocytic leukemia, Acute myeloblastic leukemia with maturation, Acute myeloid dendritic cell leukemia, Acute myeloid leukemia, Acute promyelocytic leukemia, Adamantinoma, Adenocarcinoma, Adenoid cystic carcinoma, Adenoma, Adenomatoid odontogenic tumor, Adrenocortical carcinoma, Adult T-cell leukemia, Aggressive NK-cell leukemia, AIDS-Related Cancers, AIDS-related lymphoma, Alveolar soft part sarcoma, Ameloblastic fibroma, Anal cancer, Anaplastic large cell lymphoma, Anaplastic thyroid cancer. Angioimmunoblastic T-cell lymphoma, Angiomyolipoma, Angiosarcoma, Appendix cancer, Astrocytoma, Atypical teratoid rhabdoid tumor, Basal cell carcinoma, Basal-like carcinoma, B-cell leukemia, B-cell lymphoma, Bellini duct carcinoma, Biliary tract cancer, Bladder cancer, Blastoma, Bone Cancer, Bone tumor, Brain Stem Glioma, Brain Tumor, Breast Cancer, Brenner tumor, Bronchial Tumor, Bronchioloalveolar carcinoma, Brown tumor, Burkitt's lymphoma, Cancer of Unknown Primary Site, Carcinoid Tumor, Carcinoma, Carcinoma in situ, Carcinoma of the penis, Carcinoma of Unknown Primary Site, Carcinosarcoma, Castleman's Disease, Central Nervous System Embryonal Tumor, Cerebellar Astrocytoma, Cerebral Astrocytoma, Cervical Cancer, Cholangiocarcinoma, Chondroma, Chondrosarcoma, Chordoma, Choriocarcinoma, Choroid plexus papilloma, Chronic Lymphocytic Leukemia, Chronic monocytic leukemia, Chronic myelogenous leukemia, Chronic Myeloproliferative Disorder, Chronic neutrophilic leukemia, Clear-cell tumor, Colon Cancer, Colorectal cancer, Craniopharyngioma, Cutaneous T-cell lymphoma, Degos disease, Dermatofibrosarcoma protuberans, Dermoid cyst, Desmoplastic small round cell tumor, Diffuse large B cell lymphoma, Dysembryoplastic neuroepithelial tumor, Embryonal carcinoma, Endodermal sinus tumor, Endometrial cancer, Endometrial Uterine Cancer, Endometrioid tumor, Enteropathy-associated T-cell lymphoma, Ependymoblastoma, Ependymoma, Epithelioid sarcoma, Erythroleukemia, Esophageal cancer, Esthesioneuroblastoma, Ewing Family of Tumor, Ewing Family Sarcoma, Ewing's sarcoma, Extracranial Germ Cell Tumor, Extragonadal Germ Cell Tumor, Extrahepatic Bile Duct Cancer, Extramammary Paget's disease, Fallopian tube cancer, Fetus in fetu, Fibroma, Fibrosarcoma, Follicular lymphoma, Follicular thyroid cancer, Gallbladder Cancer, Gallbladder cancer, Ganglioglioma, Ganglioneuroma, Gastric Cancer, Gastric lymphoma, Gastrointestinal cancer, Gastrointestinal Carcinoid Tumor, Gastrointestinal Stromal Tumor, Gastrointestinal stromal tumor, Germ cell tumor, Germinorna, Gestational choriocarcinoma, Gestational Trophoblastic Tumor, Giant cell tumor of bone, Glioblastoma multiforme, Glioma, Gliomatosis cerebri, Glomus tumor, Glucagonoma, Gonadoblastoma, Granulosa cell tumor, Hairy Cell Leukemia, Hairy cell leukemia, Head and Neck Cancer, Head and neck cancer, Heart cancer, Hemangioblastoma, Hemangiopericytoma, Hemangiosarcoma, Hematological malignancy, hepatocellular carcinoma, Hepatosplenic T-cell lymphoma, Hereditary breast-ovarian cancer syndrome, Hodgkin Lymphoma, Hodgkin's lymphoma, Hypopharyngeal Cancer, Hypothalamic Glioma, Inflammatory breast cancer, Intraocular Melanoma, Islet cell carcinoma, Islet Cell Tumor, Juvenile myelomonocytic leukemia, Kaposi Sarcoma, Kaposi's sarcoma, Kidney Cancer, Klatskin tumor, Krukenberg tumor, Laryngeal Cancer, Laryngeal cancer, Lentigo maligna melanoma, Leukemia, Leukemia, Lip and Oral Cavity Cancer, Liposarcoma, Lung cancer, Luteoma, Lymphangioma, Lymphangiosarcoma, Lymphoepithelioma, Lymphoid leukemia, Lymphoma, Macroglobulinemia, Malignant Fibrous Histiocytoma, Malignant fibrous histiocytoma, Malignant Fibrous Histiocytoma of Bone, Malignant Glioma, Malignant Mesothelioma, Malignant peripheral nerve sheath tumor, Malignant rhabdoid tumor, Malignant triton tumor, MALT lymphoma, Mantle cell lymphoma, Mast cell leukemia, Mediastinal germ cell tumor, Mediastinal tumor, Medullary thyroid cancer, Medulloblastoma, Medulloblastoma, Medulloepithelioma, Melanoma, Melanoma, Meningioma, Merkel Cell Carcinoma, Mesothelioma, Mesothelioma, Metastatic Squamous Neck Cancer with Occult Primary, Metastatic urothelial carcinoma, Mixed Mullerian tumor, Monocytic leukemia, Mouth Cancer, Mucinous tumor, Multiple Endocrine Neoplasia Syndrome, Multiple Myeloma, Multiple myeloma, Mycosis Fungoides, Mycosis fungoides, Myelodysplastic Disease, Myelodysplastic Syndromes, Myeloid leukemia, Myeloid sarcoma, Myeloproliferative Disease, Myxoma, Nasal Cavity Cancer, Nasopharyngeal Cancer, Nasopharyngeal carcinoma, Neoplasm, Neurinoma, Neuroblastoma, Neuroblastoma, Neurofibroma, Neuroma, Nodular melanoma, Non-Hodgkin Lymphoma, Non-Hodgkin lymphoma, Nonmelanoma Skin Cancer, Non-Small Cell Lung Cancer, Ocular oncology, Oligoastrocytoma, Oligodendroglioma, Oncocytoma, Optic nerve sheath meningioma, Oral Cancer, Oral cancer, Oropharyngeal Cancer, Osteosarcoma, Osteosarcoma, Ovarian Cancer, Ovarian cancer, Ovarian Epithelial Cancer, Ovarian Germ Cell Tumor, Ovarian Low Malignant Potential Tumor, Paget's disease of the breast, Pancoast tumor, Pancreatic Cancer, Pancreatic cancer, Papillary thyroid cancer, Papillomatosis, Paraganglioma, Paranasal Sinus Cancer, Parathyroid Cancer, Penile Cancer, Perivascular epithelioid cell tumor, Pharyngeal Cancer, Pheochromocytoma, Pineal Parenchymal Tumor of Intermediate Differentiation, Pineoblastoma, Pituicytoma, Pituitary adenoma, Pituitary tumor, Plasma Cell Neoplasm. Pleuropulmonary blastoma, Polyembryoma, Precursor T-lymphoblastic lymphoma, Primary central nervous system lymphoma, Primary effusion lymphoma, Primary Hepatocellular Cancer, Primary Liver Cancer, Primary peritoneal cancer, Primitive neuroectodermal tumor, Prostate cancer, Pseudomyxoma peritonei, Rectal Cancer, Renal cell carcinoma, Respiratory Tract Carcinoma Involving the NUT Gene on Chromosome 15, Retinoblastoma, Rhabdomyoma, Rhabdomyosarcoma, Richter's transformation, Sacrococcygeal teratoma, Salivary Gland Cancer, Sarcoma, Schwannomatosis, Sebaceous gland carcinoma, Secondary neoplasm, Seminoma, Serous tumor, Sertoli-Leydig cell tumor, Sex cord-stromal tumor, Sezary Syndrome, Signet ring cell carcinoma, Skin Cancer, Small blue round cell tumor, Small cell carcinoma, Small Cell Lung Cancer, Small cell lymphoma, Small intestine cancer, Soft tissue sarcoma, Somatostatinoma, Soot wart, Spinal Cord Tumor, Spinal tumor, Splenic marginal zone lymphoma, Squamous cell carcinoma, Stomach cancer, Superficial spreading melanoma, Supratentorial Primitive Neuroectodermal Tumor, Surface epithelial-stromal tumor, Synovial sarcoma, T-cell acute lymphoblastic leukemia, T-cell large granular lymphocyte leukemia, T-cell leukemia, T-cell lymphoma, T-cell prolymphocytic leukemia, Teratoma, Terminal lymphatic cancer, Testicular cancer, Thecoma, Throat Cancer, Thymic Carcinoma, Thymoma, Thyroid cancer, Transitional Cell Cancer of Renal Pelvis and Ureter. Transitional cell carcinoma, Urachal cancer, Urethral cancer, Urogenital neoplasm, Uterine sarcoma, Uveal melanoma, Vaginal Cancer, Verner Morrison syndrome, Verrucous carcinoma, Visual Pathway Glioma, Vulvar Cancer, Waldenstrom's macroglobulinemia, Warthin's tumor, Wilms' tumor, or any combination thereof.

In an embodiment of the invention, the patient may have been diagnosed with a cancer selected from Colorectal Cancer, Non-Small Cell Lung Cancer, Cholangiocarcinoma, Mesothelioma, Castleman's disease, Renal Cell Carcinoma, or any combination thereof.

In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment or variant thereof may comprise a heavy chain polypeptide sequence comprising: SEQ ID NO: 3, 18, 19, 652, 656, 657, 658, 661, 664, 665, 704, or 708; and may further comprise a VL polypeptide sequence comprising: SEQ ID NO: 2, 20, 647, 651, 660, 666, 699, 702, 706, or 709 or a variant thereof wherein one or more of the framework residues (FR residues) in said VH or VL polypeptide may have been substituted with another amino acid residue resulting in an anti-IL-6 antibody or antibody fragment or variant thereof that specifically binds human IL-6, or may comprise a polypeptide wherein the CDRs therein are incorporated into a human framework homologous to said sequence. Preferably the variable heavy and light sequences comprise those in SEQ ID NO: 657 and 709 (humanized Ab1).

In an embodiment of the invention, one or more of said FR residues may be substituted with an amino acid present at the corresponding site in a parent rabbit anti-IL-6 antibody from which the complementarity determining regions (CDRs) contained in said VH or VL polypeptides have been derived or by a conservative amino acid substitution.

In an embodiment of the invention, said anti-IL-6 antibody or antibody fragment or variant thereof may be humanized.

In an embodiment of the invention, said anti-IL-6 antibody or antibody fragment or variant thereof may be chimeric.

In an embodiment of the invention, said anti-IL-6 antibody or antibody fragment or variant thereof further may comprise a human Fc, e.g., an Fc region comprised of the variable heavy and light chain constant regions contained in SEQ ID NO: 704 and 702.

In an embodiment of the invention, said human Fc may be derived from IgG1, IgG2, IgG3, IgG4, IgG5, IgG6, IgG7, IgG8, IgG9, IgG10, IgG11, IgG12, IgG13, IgG14, IgG15, IgG16, IgG117, IgG18 or IgG19.

In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment or variant thereof may comprise a polypeptide having at least 90% sequence homology to one or more of the polypeptide sequences of SEQ ID NO: 3, 18, 19, 652, 656, 657, 658, 661, 664, 665, 704, 708, 2, 20, 647, 651, 660, 666, 699, 702, 706, and 709.

In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment or variant thereof may have an elimination half-life of at least about 22 days, at least about 25 days, or at least about 30 days.

In an embodiment of the invention, the IL-6 antagonist such as Ab1 may be co-administered with a chemotherapy agent. In an embodiment of the invention, the chemotherapy agent include without limitation thereto: VEGF antagonists, EGFR antagonists, platins, taxols, irinotecan, 5-fluorouracil, gemcytabine, leucovorins, steroids, cyclophosphamide, melphalan, vinca alkaloids (e.g., vinblastine, vincristine, vindesine and vinorelbine), mustines, tyrosine kinase inhibitors, radiotherapy, sex hormone antagonists, selective androgen receptor modulators, selective estrogen receptor modulators, PDGF antagonists, TNF antagonists, IL-1 antagonists, interleukins (e.g. IL-12 or IL-2), IL-12R antagonists, Toxin conjugated monoclonal antibodies, tumor antigen specific monoclonal antibodies, Erbitux.TM., Avastin.TM., Pertuzumab, anti-CD20 antibodies, Rituxan.RTM., ocrelizumab, ofatumumab, DXL625, Herceptin.RTM., or any combination thereof.

In an embodiment of the invention, the another therapeutic compound may be a statin.

In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment or variant thereof may be directly or indirectly attached to a detectable label or therapeutic agent.

In an embodiment of the invention, the anti-IL-6 antibody or antibody fragment may be Ab1 or a humanized, chimeric, single chain or fragment thereof comprising all or most of the CDRs of Ab1.

In an embodiment of the invention, the disease or condition may be selected from acute venous thrombosis, pulmonary embolism, thrombosis during pregnancy, hemorrhagic skin necrosis, acute or chronic disseminated intravascular coagulation (DIC), clot formation from surgery, long bed rest, long periods of immobilization, venous thrombosis, fulminant meningococcemia, acute thrombotic stroke, acute coronary occlusion, acute peripheral arterial occlusion, massive pulmonary embolism, axillary vein thrombosis, massive iliofemoral vein thrombosis, occluded arterial cannulac, occluded venous cannulae, cardiomyopathy, venoocclusive disease of the liver, hypotension, decreased cardiac output, decreased vascular resistance, pulmonary hypertension, diminished lung compliance, leukopenia, thrombocytopenia, heparin-induced thrombocytopenia (HIT), heparin-induced thrombocytopenia and thrombosis (HITT), atrial fibrillation, implantation of a prosthetic heart valve, genetic susceptibility to thrombosis, factor V Leiden, prothrombin gene mutation, methylenetetrahydrofolate reductase (MTHFR) polymorphism, platelet-receptor polymorphism, trauma, fractures, burns, or any combination thereof.

In an embodiment of the invention, the disease or condition may be selected from cancer, rheumatoid arthritis, AIDS, heart disease, dehydration, malnutrition, lead exposure, malaria, respiratory disease, old age, hypothyroidism, tuberculosis, hypopituitarism, neurasthenia, hypernatremia, hyponatremia, renal disease, splenica, ankylosing spondylitis, failure to thrive (faltering growth), or any combination thereof.

In an embodiment of the invention, the method may include administration of an antagonist of a cachexia-associated factor, weakness-associated factor, fatigue-associated factor, and/or fever-associated factor. The cachexia-associated factor, weakness-associated factor, fatigue-associated factor, and/or fever-associated factor may be selected from tumor necrosis factor-alpha, Interferon gamma, Interleukin 1 alpha, Interleukin 1 beta, Interleukin 6, proteolysis inducing factor, leukemia-inhibitory factor, or any combination thereof.

In an embodiment of the invention, the method may include administration of an anti-cachexia agent selected from cannabis, dronabinol (Marinol.TM.), nabilone (Cesamet), cannabidiol, cannabichromene, tetrahydrocannabinol, Sativex, megestrol acetate, or any combination thereof.

In an embodiment of the invention, the method may include administration of an anti-nausea or antiemetic agent selected from 5-HT3 receptor antagonists, ajwain, alizapride, anticholinergics, antihistamines, aprepitant, benzodiazepines, cannabichromene, cannabidiol, cannabinoids, cannabis, casopitant, chlorpromazine, cyclizine, dexamethasone, dexamethasone, dimenhydrinate (Gravol.TM.), diphenhydramine, dolasetron, domperidone, dopamine antagonists, doxylamine, dronabinol (Marinol.TM.), droperidol, emetrol, ginger, granisetron, haloperidol, hydroxyzine, hyoscine, lorazepam, meclizine, metoclopramide, midazolam, muscimol, nabilone (Cesamet), nk1 receptor antagonists, ondansetron, palonosetron, peppermint, Phenergan, prochlorperazine, Promacot, promethazine, Pentazine, propofol, sativex, tetrahydrocannabinol, trimethobenzamide, tropisetron, nandrolone, stilbestrol, thalidomide, lenalidomide, ghrelin agonists, myostatin antagonists, anti-myostatin antibodies, selective androgen receptor modulators, selective estrogen receptor modulators, angiotensin AII antagonists, beta two adenergic receptor agonists, beta three adenergic receptor agonists, or any combination thereof.

In an embodiment of the invention, the method may include administration of an anti-nausea or antiemetic agent selected from 5-HT3 receptor antagonists, ajwain, alizapride, anticholinergics, antihistamines, aprepitant, benzodiazepines, cannabichromene, cannabidiol, cannabinoids, cannabis, casopitant, chlorpromazine, cyclizine, dexamethasone, dexamethasone, dimenhydrinate (Gravol.TM.), diphenhydramine, dolasetron, domperidone, dopamine antagonists, doxylamine, dronabinol (Marinol.TM.), droperidol, emetrol, ginger, granisetron, haloperidol, hydroxyzine, hyoscine, lorazepam, meclizine, metoclopramide, midazolam, muscimol, nabilone (Cesamet), nk1 receptor antagonists, ondansetron, palonosetron, peppermint, Phenergan, prochlorperazine, Promacot, promethazine, Pentazine, propofol, sativex, tetrahydrocannabinol, trimethobenzamide, tropisetron, nandrolone, stilbestrol, thalidomide, lenalidomide, ghrelin agonists, myostatin antagonists, anti-myostatin antibodies, selective androgen receptor modulators, selective estrogen receptor modulators, angiotensin AII antagonists, beta two adenergic receptor agonists, beta three adenergic receptor agonists, or any combination thereof.

In an embodiment of the invention, the patient's fever may be assessed by measurement of patient's body temperature.

In an embodiment of the invention, the method may include measuring the patient's body temperature prior to administration of the anti-IL-6 antibody, and administering the anti-IL-6 antibody or antibody fragment or variant thereof if the patient's body temperature is higher than about 38.degree. C.

In an embodiment of the invention, the method may include measuring the patient's body temperature within 24 hours prior to administration of the anti-IL-6 antibody, and administering the anti-IL-6 antibody or antibody fragment or variant thereof if the patient's body temperature measurement indicates that a fever was present.

In an embodiment of the invention, the method may further include measuring the patient's body weight prior to administration of the anti-IL-6 antibody, and administering the anti-IL-6 antibody or antibody fragment or variant thereof if the patient's weight has declined by greater than approximately 5% within approximately 30 days, or if the patient's lean body mass index is less than about 17 kg/m.sup.2 (male patient) or less than about 14 kg/m.sup.2 (female patient).

In an embodiment of the invention, the method may include measuring the patient's muscular strength prior to administration of the anti-IL-6 antibody, and administering the anti-IL-6 antibody or antibody fragment or variant thereof if the patient's muscular strength has declined by greater than approximately 20% within approximately 30 days.

In an embodiment of the invention, the method may result in a prolonged improvement in cachexia, weakness, fatigue, and/or fever in the patient.

In an embodiment of the invention, the patient's body mass may be raised by approximately 1 kilogram within approximately 4 weeks of administration of the anti-IL-6 antibody or antibody fragment or variant thereof.

In an embodiment of the invention, the patient's cachexia may be measurably improved within about 4 weeks of anti-IL-6 antibody administration.

In an embodiment of the invention, the patient's cachexia may be assessed by measurement of the patient's total body mass, lean body mass, lean body mass index, and/or appendicular lean body mass.

In an embodiment of the invention, the measurement of the patient's body mass may discount (subtract) the estimated weight of the patient's tumor(s) and/or extravascular fluid collection(s).

In an embodiment of the invention, the patient's cachexia may remain measurably improved approximately 8 weeks after anti-IL-6 antibody administration.

In an embodiment of the invention, the patient's weakness may be measurably improved within about 4 weeks of anti-IL-6 antibody administration.

In an embodiment of the invention, the patient's weakness may be measured by the hand grip strength test.

In an embodiment of the invention, the patient's hand grip strength may be improved by at least about 15%, or at least about 20%.

In an embodiment of the invention, the patient's weakness may remain measurably improved approximately 8 weeks after anti-IL-6 antibody administration.

In an embodiment of the invention, the patient's fatigue may be measurably improved within about 1 week of anti-IL-6 antibody administration.

In an embodiment of the invention, the patient's fatigue may be measured by the FACIT-F FS test.

In an embodiment of the invention, the patient's FACIT-F FS score may be improved by at least about 10 points.

In an embodiment of the invention, the patient's fatigue may remain measurably improved approximately 8 weeks after anti-IL-6 antibody administration.

In an embodiment of the invention, the patient's fever may be measurably improved within about 1 week of anti-IL-6 antibody administration.

In an embodiment of the invention, the patient's fever may remain measurably improved approximately 8 weeks after anti-IL-6 antibody administration.

In an embodiment of the invention, the patient's quality of life may be improved.

In an embodiment of the invention, may include administration of one or more anti-coagulants or statins.

In an embodiment of the invention, the one or more anti-coagulants may be selected from abciximab (RcoPro.TM.), acenocoumarol, antithrombin HI, argatroban, aspirin, bivalirudin (Angiomax.TM.), clopidogrel, dabigatran, dabigatran etexilate (Pradaxa.TM./Pradax.TM.), desirudin (Revasc.TM./Iprivask.TM.), dipyridamole, eptifibatide (Integrilin.TM.), fondaparinux, heparin, hirudin, idraparinux, lepirudin (Refludan.TM.), low molecular weight heparin, melagatran, phenindione, phenprocoumon; ticlopidine, tirofiban (Aggrastat.TM.), warfarin, ximelagatran, ximelagatran (Exanta.TM./Exarta.TM.), or any combination thereof.

In an embodiment of the invention, the one or more statins may be selected from atorvastatin, cerivastatin, fluvastatin, lovastatin, mevastatin, pitavastatin, pravastatin, rosuvastatin, simvastatin, or any combination thereof.

In an embodiment of the invention, the patient's coagulation profile may be assessed by measurement of the patient's serum level of one or more of D-dimer, Factor H, Factor V, Factor VIII, Factor IX, Factor XI, Factor XII, F/fibrin degradation products, thrombin-antithrombin HI complex, fibrinogen, plasminogen, prothrombin, and von Willebrand factor.

In an embodiment of the invention, the patient's coagulation profile may be assessed by a functional measurement of clotting ability.

In an embodiment of the invention, the functional measurement of clotting ability may be selected from prothrombin time (PT), prothrombin ratio (PR), international normalized ratio (INR), or any combination thereof.

In an embodiment of the invention, the method may include measuring the patient's international normalized ratio (INR) prior to administration of the antagonist, and administering to the patient an IL-6 antagonist such as Ab1 if the patient's INR is less than about 0.9.

In an embodiment of the invention, the invention may include measuring the patient's international normalized ratio (INR) prior to administration of the IL-6 antagonist, and administering to the patient an IL-6 antagonist such as Ab1 if the patient's INR is less than about 0.5.

In an embodiment of the invention, the patient's INR may be raised to more than approximately 0.9 within 4 weeks of administering to the patient an IL-6 antagonist.

In an embodiment of the invention, the method may include measuring the patient's serum D-dimer level prior to administration of the IL-6 antagonist, and administering the IL-6 antagonist such as Ab1 if the patient's serum D-dimer level is above the normal reference range.

In an embodiment of the invention, the patient's serum D-dimer level may be lowered to less than the upper limit of the normal reference range within 4 weeks of administering to the patient an IL-6 antagonist.

In an embodiment of the invention, the method may result in a prolonged improvement in the patient's coagulation profile.

In an embodiment of the invention, the patient's coagulation profile may be measurably improved within about 2 weeks of administration of the IL-6 antagonist.

In an embodiment of the invention, the patient's coagulation profile may remain measurably improved approximately 12 weeks after administering to the patient an IL-6 antagonist.

In an embodiment of the invention, the patient's survivability may be improved.

In an embodiment of the invention, the IL-6 antagonist may be an antisense nucleic acid.

In an embodiment of the invention, the IL-6 antagonist may be an antisense nucleic acid, for example comprising at least approximately 10 nucleotides of a sequence encoding IL-6, IL-6 receptor alpha, gp130, p38 MAP kinase, MK 1, JAK2, JAK3, or SYK.

In an embodiment of the invention, the antisense nucleic acid may comprise DNA, RNA, peptide nucleic acid, locked nucleic acid, morpholin (phosphorodiamidate morpholino oligo), glycerol nucleic acid, threose nucleic acid, or any combination thereof.

In an embodiment of the invention, the IL-6 antagonist may comprise Actemra.TM. (Tocilizumab), Remicade.RTM., Zenapax.TM. (daclizumab), or any combination thereof.

In an embodiment of the invention, the IL-6 antagonist may comprise a polypeptide having a sequence comprising a fragment of IL-6, IL-6 receptor alpha, gp130, p38 MAP kinase, JAK1, JAK2, JAK3, SYK, or any combination thereof, such as a fragment or full-length polypeptide that is at least 40 amino acids in length.

In an embodiment of the invention, the IL-6 antagonist may comprise a soluble IL-6, IL-6 receptor alpha, gp130, p38 MAP kinase, JAK1, JAK2, JAK3, SYK, or any combination thereof.

In an embodiment of the invention, the IL-6 antagonist may be coupled to a half-life increasing moiety.

In an embodiment of the invention, the method may include measuring the patient's serum CRP level prior to administration of the anti-IL-6 antibody, and administering the anti-IL-6 antibody or antibody fragment or variant thereof if the patient's serum CRP level is at least approximately 5 mg/L.

In an embodiment of the invention, the patient's serum CRP level may be reduced to less than approximately 5 mg/L within 1 week of administration of the IL-6 antagonist.

In an embodiment of the invention, the patient's serum CRP level may be reduced to below 1 mg/L within 1 week of administration of the IL-6 antagonist.

In an embodiment of the invention, treatment may result in a prolonged reduction in serum CRP level of the patient.

In an embodiment of the invention, the patient's serum CRP level may be reduced to below 10 mg/L within about 1 week of IL-6 antagonist administration.

In an embodiment of the invention, 14 days after IL-6 antagonist administration the patient's serum CRP level may remain below 10 mg/L.

In an embodiment of the invention, 21 days after IL-6 antagonist administration the patient's serum CRP level may remain below 10 mg/L.

In an embodiment of the invention, 28 days after IL-6 antagonist administration the patient's serum CRP level may remain below 10 mg/L.

In an embodiment of the invention, 35 days after IL-6 antagonist administration the patient's serum CRP level may remain below 10 mg/L.

In an embodiment of the invention, 42 days after IL-6 antagonist administration the patient's serum CRP level may remain below 10 mg/L.

In an embodiment of the invention, 49 days after IL-6 antagonist administration the patient's serum CRP level may remain below 10 mg/L.

In an embodiment of the invention, 56 days after IL-6 antagonist administration the patient's serum CRP level may remain below 10 mg/L.

In an embodiment of the invention, the patient's survivability is improved.

In an embodiment of the invention, the method may include measuring the patient's serum albumin level prior to administration of the IL-6 antagonist, and administering the IL-6 antagonist such as Ab1 if the patient's serum albumin level is less than approximately 35 g/L.

In an embodiment of the invention, the patient's serum albumin level may be increased to more than approximately 35 g/L within about 5 weeks of administration of the IL-6 antagonist.

In an embodiment of the invention, treatment may result in a prolonged increase in serum albumin level of the patient.

In an embodiment of the invention, 42 days after IL-6 antagonist administration the patient's serum albumin level may remain above 35 g/L.

In an embodiment of the invention, 49 days after IL-6 antagonist administration the patient's serum albumin level may remain above 35 g/L.

In an embodiment of the invention, 56 days after IL-6 antagonist administration the patient's serum albumin level may remain above 35 g/L.

In an embodiment of the invention, the patient's serum albumin level may be increased by about 5 g/L within approximately 5 weeks of administering the IL-6 antagonist.

In an embodiment of the invention, the patient may have been diagnosed with rheumatoid arthritis, cancer, advanced cancer, liver disease, renal disease, inflammatory bowel disease, celiac's disease, trauma, burns, other diseases associated with reduced serum albumin, or any combination thereof.

In an embodiment of the invention, the method may further comprise administration of one or more statins to the patient, including without limitation thereto atorvastatin, cerivastatin, fluvastatin, lovastatin, mevastatin, pitavastatin, pravastatin, rosuvastatin, simvastatin, or any combination thereof.

Another embodiment of the invention relates to a composition comprising an IL-6 antagonist such as Ab1, and an anti-coagulant. In an embodiment of the invention, the one or more anti-coagulants may be selected from abciximab (ReoPro.TM.), acenocoumarol, antithrombin III, argatroban, aspirin, bivalirudin (Angiomax.TM.), clopidogrel, dabigatran, dabigatran etexilate (Pradaxa.TM./Pradax.TM.), desirudin (Revasc.TM./Iprivask.TM.), dipyridamole, eptifibatide (Integrilin.TM.), fondaparinux, heparin, hirudin, idraparinux, lepirudin (Refludan.TM.), low molecular weight heparin, melagatran, phenindione, phenprocoumon, ticlopidine, tirofiban (Aggrastat.TM.), warfarin, ximelagatran, ximelagatran (Exanta.TM./Exarta.TM.), or any combination thereof.

Another embodiment of the invention relates to a composition comprising an IL-6 antagonist such as Ab1, and a chemotherapy agent. In an embodiment of the invention, the chemotherapy agent may be selected from VEGF antagonists, EGFR antagonists, platins, taxols, irinotecan, 5-fluorouracil, gemcytabine, leucovorine, steroids, cyclophosphamide, melphalan, vinca alkaloids (e.g., vinblastine, vincristine, vindesine and vinorelbine), mustines, tyrosine kinase inhibitors, radiotherapy, sex hormone antagonists, selective androgen receptor modulators, selective estrogen receptor modulators, PDGF antagonists, TNF antagonists, IL-1 antagonists, interleukins (e.g. IL-12 or IL-2), IL-12R antagonists, Toxin conjugated monoclonal antibodies, tumor antigen specific monoclonal antibodies, Erbitux.TM., Avastin.TM., Pertuzumab, anti-CD20 antibodies, Rituxan.RTM., ocrelizumab, ofatumumab, DXL625, Herceptin.RTM., or any combination thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows that a variety of unique epitopes were recognized by the collection of anti-IL-6 antibodies prepared by the antibody selection protocol. Epitope variability was confirmed by antibody-IL-6 binding competition studies (ForteBio Octet).

FIG. 2 shows alignments of variable light and variable heavy sequences between a rabbit antibody variable light and variable heavy sequences and homologous human sequences and the humanized sequences. Framework regions are identified FR1-FR4. Complementarity determining regions are identified as CDR1-CDR3. Amino acid residues are numbered as shown. The initial rabbit sequences are called RbtVL and RbtVH for the variable light and variable heavy sequences respectively. Three of the most similar human germline antibody sequences, spanning from Framework 1 through to the end of Framework 3, are aligned below the rabbit sequences. The human sequence that is considered the most similar to the rabbit sequence is shown first. In this example those most similar sequences are L12A for the light chain and 3-64-04 for the heavy chain. Human CDR3 sequences are not shown. The closest human Framework 4 sequence is aligned below the rabbit Framework 4 sequence. The vertical dashes indicate a residue where the rabbit residue is identical with one or more of the human residues at the same position. The bold residues indicate that the human residue at that position is identical to the rabbit residue at the same position. The final humanized sequences are called VLh and VHh for the variable light and variable heavy sequences respectively. The underlined residues indicate that the residue is the same as the rabbit residue at that position but different than the human residues at that position in the three aligned human sequences.

FIG. 3 demonstrates the high correlation between the IgG produced and antigen specificity for an exemplary IL-6 protocol. 9 of 11 wells showed specific IgG correlation with antigen recognition.

FIG. 4 provides the alpha-2-macroglobulin (A2M) dose response curve for antibody Ab1 administered intravenously at different doses one hour after a 100 .mu.g/kg s.c. dose of human IL-6.

FIG. 5 provides survival data for the antibody Ab1 progression groups versus control groups.

FIG. 6 provides additional survival data for the antibody Ab1 regression groups versus control groups.

FIG. 7 provides survival data for polyclonal human IgG at 10 mg/kg i.v. every three days (270-320 mg tumor size) versus antibody Ab1 at 10 mg/kg i.v. every three days (270-320 mg tumor size).

FIG. 8 provides survival data for polyclonal human IgG at 10 mg/kg i.v. every three days (400-527 mg tumor size) versus antibody Ab1 at 10 mg/kg i.v. every three days (400-527 mg tumor size).

FIG. 9 provides a pharmacokinetic profile of antibody Ab1 in cynomolgus monkey. Plasma levels of antibody Ab1 were quantitated through antigen capture ELISA. This protein displays a half life of between 12 and 17 days consistent with other full length humanized antibodies.

FIGS. 10A to 10E provide binding data for antibodies Ab4, Ab3, Ab8 and Ab2, respectively. FIG. 10 E provides binding data for antibodies Ab1, Ab6 and Ab7.

FIG. 11 summarizes the binding data of FIG. 10 (A-E) in tabular form.

FIG. 12 presents the sequences of the 15 amino acid peptides used in the peptide mapping experiment of Example 14.

FIG. 13 presents the results of the blots prepared in Example 14.

FIG. 14 presents the results of the blots prepared in Example 14.

FIG. 15A shows affinity and binding kinetics of Ab1 for IL-6 of various species.

FIG. 15B demonstrates inhibition of IL-6 by Ab1 in the T1165 cell proliferation assay.

FIG. 16 shows the mean plasma concentration of Ab1 resulting from a single administration of Ab1 to healthy male subjects in several dosage groups.

FIG. 17 shows mean area under the plasma Ab1 concentration time curve (AUC) for the dosage groups shown in FIG. 16.

FIG. 18 shows mean peak plasma Ab1 concentration (C.sub.max) for the dosage groups shown in FIG. 16.

FIG. 19 summarizes Ab1 pharmacokinetic measurements of the dosage groups shown in FIG. 16.

FIG. 20 shows the mean plasma concentration of Ab1 resulting from a single administration of Ab1 to patients with advanced cancer.

FIG. 21 illustrates the unprecedented elimination half-life of Ab1 compared with other anti-IL-6 antibodies.

FIG. 22 shows increased hemoglobin concentration following administration of Ab1 to patients with advanced cancer.

FIG. 23 shows mean plasma lipid concentrations following administration of Ab1 to patients with advanced cancer.

FIG. 24 shows mean neutrophil counts following administration of Ab1 to patients with advanced cancer.

FIG. 25 demonstrates suppression of serum CRP levels in healthy individuals.

FIGS. 26A and 26B demonstrate suppression of serum CRP levels in advanced cancer patients.

FIG. 27 shows prevention of weight loss by Ab1 in a mouse cancer cachexia model.

FIG. 28 shows the physical appearance of representative Ab1-treated and control mice in a cancer cachexia model.

FIG. 29 demonstrates that Ab1 promotes weight gain in advanced cancer patients.

FIG. 30 demonstrates that Ab1 reduces fatigue in advanced cancer patients.

FIG. 31 demonstrates that Ab1 promotes hand grip strength in advanced cancer patients.

FIG. 32 demonstrates that Ab1 suppresses an acute phase protein (Serum Amyloid A) in mice.

FIG. 33 demonstrates that Ab1 increase plasma albumin concentration in advanced cancer patients.

FIGS. 34A and 34B and FIGS. 35A and 35B show alignments between a rabbit antibody light and variable heavy sequences and homologous human sequences and the humanized sequences. Framework regions are identified as FR1-FR4. Complementarity determining regions are identified as CDR1-CDR3.

FIGS. 36A and 36B and FIGS. 37A and 37B show alignments between light and variable heavy sequences, respectively, of different forms of Ab1. Framework regions are identified as FR1-FR4. Complementarity determining regions are identified as CDR1-CDR3. Sequence differences within the CDR regions highlighted.

FIG. 38 shows the mean CRP values for each dosage concentrations (placebo, 80 mg, 160 mg, and 320 mg) of the Ab1 monoclonal antibody.

FIG. 39 shows the change in median values of CRP from each dosage concentration group corresponding to FIG. 38.

FIG. 40 shows a reduction in serum CRP levels in patients with various cancers after dosing at 80, 160 or 320 mg for 12 weeks.

FIG. 41 shows a reduction in serum CRP levels in the patient population with rheumatoid arthritis after dosing at 80, 160 and 320 mg for 12 weeks.

FIG. 42 demonstrates that Ab1 increases mean hemoglobin at 80, 160 and 320 mg after 12 weeks of dosing.

FIG. 43 demonstrates mean change from baseline hemoglobin for the data presented in FIG. 42.

FIG. 44 demonstrates that Ab1 increases mean hemoglobin at 160 and 320 mg after 12 weeks of dosing in patients having baseline hemoglobin below 11 g/l.

FIG. 45 demonstrates that Ab1 increases mean hemoglobin at 80, 160 and 320 mg after 16 weeks of dosing.

FIG. 46 demonstrates that Ab1 increases mean albumin concentration at 80, 160 and 320 mg after 12 weeks of dosing.

FIG. 47 demonstrates the change from baseline for mean albumin concentration from each dosage concentration group corresponding to FIG. 46.

FIG. 48 demonstrates that Ab1 provides sustained increases in mean albumin concentration at 160 and 320 mg after 12 weeks of dosing in patients having baseline albumin below 35 g/l.

FIG. 49 demonstrates the averaged weight change data from each dosage concentration group (placebo, 80 mg, 160 mg, and 320 mg) of the Ab1 monoclonal antibody over 12 weeks.

FIG. 50 demonstrates the averaged percent change in body weight from each dosage concentration group corresponding to FIG. 49.

FIG. 51 demonstrates the change in averaged lean body mass data for the dosage concentration groups corresponding to FIG. 49.

FIG. 52 demonstrates increases in the mean Facit-F FS subscale score for some of the dosage concentration groups in the patient population after dosing at 80, 160 and 320 mg after 8 weeks.

FIG. 53 demonstrates the change from baseline Facit-F FS subscale score corresponding to FIG. 52.

FIG. 54 demonstrates that Ab1 drops D-dimer levels ver placebo at 80, 160 and 320 mg after 16 weeks of dosing.

FIG. 55 demonstrates the percent change from baseline in D-dimer concentration from each dosage concentration group corresponding to FIG. 54.

FIG. 56 demonstrating that treatment of patients with rheumatoid arthritis produced significant improvement over placebo based upon ACR metrics.

FIG. 57 demonstrates patients achieving ACR 20 over placebo at 80, 160, and 320 mg after 16 weeks of dosing.

FIG. 58 demonstrates patients achieving ACR 50 over placebo at 80, 160, and 320 mg after 16 weeks of dosing.

FIG. 59 demonstrates patients achieving ACR 70 over placebo at 80, 160, and 320 mg after 16 weeks of dosing.

FIG. 60 demonstrates the change from baseline for the components of the ACR metric for placebo, 80, 160, and 320 mg dosage concentration groups.

FIG. 61 demonstrates the change in HAQ-D1 scores for placebo, NO, 160, and 320 mg dosage concentration groups.

FIG. 62 demonstrates the change in DAS28 scores for placebo, 80, 160, and 320 mg dosage concentration groups.

FIG. 63 demonstrates the change in percentage of patients achieving EULAR good or moderate responses for placebo, 80, 160, and 320 mg dosage concentration groups.

FIG. 64 schematically shows a clinical study relating to the use of humanized Ab1 for treatment of rheumatoid arthritis.

FIG. 65 shows plasma concentrations of humanized Ab1 in rheumatoid arthritis patients after subcutaneous (SC) or intravenous (iv) dosing with humanized Ab1.

FIG. 66 shows plasma CRP level concentrations after subcutaneous or intravenous dosing of humanized Ab1.

FIGS. 67A and 67B contain a table enumerating adverse events in patients administered humanized Ab1 through week 24.

FIG. 68 contains a Table enumerating injection site reactions to humanized Ab1 through week 12 after antibody administration.

FIG. 69 tabulates clinical laboratory evaluations (ALT, AST, bilirubin, neutrophil counts, and platelet counts) for patients subcutaneously or intravenously administered humanized Ab1 and controls through week 12 after humanized Ab1 administration.

FIG. 70 tabulates plasma pharmacokinetic parameters in patients through week 24 after subcutaneous or intravenous administration of humanized Ab1.

FIG. 71 shows the effect of subcutaneous and intravenous administration of ALD518 through week 12 after antibody dosing at 50 or 100 mg.

DETAILED DESCRIPTION

Definitions

It is to be understood that this invention is not limited to the particular methodology, protocols, cell lines, animal species or genera, and reagents described, as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

The term "variants" (as applied to antibodies including Ab1) includes single-chain antibodies, dimers, multimers, sequence variants, domain substitution variants, etc. Single-chain antibodies such as SMIPs, shark antibodies, nanobodies (e.g., Camelidiae antibodies). Sequence variants can be specified by percentage identity (or similarity) e.g., 99%, 95%, 90%, 85%, 80%, 70%, 60%, etc. or by numbers of permitted conservative or non-conservative substitutions. Domain substitution variants include replacement of a domain of one protein with a similar domain of a related protein. A similar domain may be identified by similarity of sequence, structure (actual or predicted), or function. For example, domain substitution variants include the substitution of one or more CDRs and/or framework regions.

As used herein the singular forms "a", "and", and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a cell" includes a plurality of such cells and reference to "the protein" includes reference to one or more proteins and equivalents thereof known to those skilled in the art, and so forth. All technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs unless clearly indicated otherwise.

Interleukin-6 (IL-6): As used herein, interleukin-6 (IL-6) encompasses not only the following 212 amino acid sequence available as GenBank Protein Accession No. NP_000591: MNSFSTSAFGPVAFSLGLLLVLPAAFPAPVPPGEDSKDVAAPHRQPLTSSERIDKQIRYIL DGISALRKETCNKSNMCESSKEALAENNLNLPKMAEKDGCFQSGFNEETCLVKIITGLLE FEVYLEYLQNRFESSEEQARAVQMSTKVLIQFLQKKAKNLDAITTPDPTTNASLLTKLQA QNQWLQDMTTHLILRSFKEFLQSSLRALRQM (SEQ ID NO: 1), hut also any pre-pro, pro- and mature forms of this IL-6 amino acid sequence, as well as mutants and variants including allelic variants of this sequence.

IL-6 antagonist: As used herein, the terms "IL-6 antagonist," and grammatical variants thereof include any composition that prevents, inhibits, or lessens the effect(s) of IL-6 signaling. Generally, such antagonists may reduce the levels or activity of IL-6, IL-6 receptor alpha, gp130, or a molecule involved in IL-6 signal transduction, or may reduce the levels or activity complexes between the foregoing (e.g., reducing the activity of an IL-6/IL-6 receptor complex). Antagonists include antisense nucleic acids, including DNA, RNA, or a nucleic acid analogue such as a peptide nucleic acid, locked nucleic acid, morpholino (phosphorodiamidate morpholino oligo), glycerol nucleic acid, or threose nucleic acid. See Heasman, Dev Biol, 2002 Mar. 15; 243(2):209-14; Hannon and Rossi, Nature. 2004 Sep. 16; 431(7006):371-8; Paul et al., Nat Biotechnol. 2002 May; 20(5):505-8; Zhang et al., J Am Chem Soc. 2005 Mar. 30; 127(12):4174-5; Wahlestedt et al., Proc Natl Acad Sci USA. 2000 May 9; 97(10):5633-8; Hanvey et al., 1992 Nov. 27; 258(5087):1481-5; Braasch et al., Biochemistry. 2002 Apr. 9; 41(14):4503-10; Schoning et al., Science. 2000 Nov. 17; 290(5495):1347-51. In addition IL-6 antagonists specifically include peptides that block IL-6 signaling such as those described in any of U.S. Pat. Nos. 6,599,875; 6,172,042; 6,838,433; 6,841,533; 5,210,075 et al. Also, IL-6 antagonists according to the invention may include p38 MAP kinase inhibitors such as those reported in US20070010529 et al. given this kinase's role in cytokine production and more particularly IL-6 production. Further, IL-6 antagonists according to the invention include the glycoalkaloid compounds reported in US20050090453 as well as other IL-6 antagonist compounds isolatable using the IL-6 antagonist screening assays reported therein. Other 11-6 antagonists include antibodies, such as anti-IL-6 antibodies, anti-IL-6 receptor alpha antibodies, anti-gp130 antibodies, and anti-p38 MAP kinase antibodies including (but not limited to) the anti-IL-6 antibodies disclosed herein, Actemra.TM. (Tocilizumab), Remicade.RTM., Zenapax.TM. (daelizumab), or any combination thereof. Other IL-6 antagonists include portions or fragments of molecules involved in IL-6 signaling, such as IL-6, IL-6 receptor alpha, and gp130, which may be native, mutant, or variant sequence, and may optionally be coupled to other moieties (such as half-life-increasing moieties, e.g. an Fc domain). For example, an IL-6 antagonist may be a soluble IL-6 receptor or fragment, a soluble IL-6 receptor:Fc fusion protein, a small molecule inhibitor of IL-6, an anti-IL-6 receptor antibody or antibody fragment or variant thereof, antisense nucleic acid, etc. Other IL-6 antagonists include avemirs, such as 0326 (Silverman et al., Nat Biotechnol. 2005 December; 23(12):1556-61) and small molecules, such as synthetic retinoid AM80 (tamibarotene) (Takeda et al., Arterioscler Thromb Vasc Biol. 2006 May; 26(5):1177-83). Such IL-6 antagonists may be administered by any means known in the art, including contacting a subject with nucleic acids which encode or cause to be expressed any of the foregoing polypeptides or antisense sequences.

Thrombosis: As used herein, thrombosis refers to a thrombus (blood clot) inside a blood vessel. The term encompasses, without limitation, arterial and venous thrombosis, including deep vein thrombosis, portal vein thrombosis, jugular vein thrombosis, renal vein thrombosis, stroke, myocardial infarction, Budd-Chiari syndrome, Paget-Schroetter disease, and cerebral venous sinus thrombosis. Diseases and conditions associated with thrombosis and the risk of developing thrombosis or hypercoagulation include, without limitation, acute venous thrombosis, pulmonary embolism, thrombosis during pregnancy, hemorrhagic skin necrosis, acute or chronic disseminated intravascular coagulation (DIC), clot formation from surgery, long bed rest, long periods of immobilization, conditions that preclude or restrict movement such as partial or complete paralysis, morbid obesity, disorders that impede oxygen uptake and absorption such as lung disorders including lung cancer, COPD, emphysema, drug related fibrosis, cystic fibrosis, venous thrombosis, fulminant meningococcemia, acute thrombotic stroke, acute coronary occlusion, acute peripheral arterial occlusion, massive pulmonary embolism, axillary vein thrombosis, massive iliofemoral vein thrombosis, occluded arterial cannulae, occluded venous cannulae, cardiomyopathy, venoocclusive disease of the liver, hypotension, decreased cardiac output, decreased vascular resistance, pulmonary hypertension, diminished lung compliance, leukopenia, and thrombocytopenia.

D-Dimer: As used herein, D-dimer refers to a fibrin degradation product produced during the break down of blood clots by the enzyme plasmin. Monoclonal antibodies specifically reactive against D-dimer are readily available, e.g. DD-3B6/22 (Elms et al., 1986, Am J Clin Pathol. 85:360-4). Clinical measurements of D-dimer levels are routinely performed, e.g., using a red blood cell agglutination test, ELISA, etc. (reviewed in Dempflc, Semin Vase Med, 2005 November; 5(4):315-20). Measurements of D-dimer may vary depending on the measurement method and testing lab; nonetheless, a normal "reference range" may be readily established for any particular method and testing lab, e.g. by taking measurements from healthy individuals. Accordingly, an elevated D-dimer level is understood by persons skilled in the art to refer to a D-dimer level that is above the reference range for the particular method and testing lab.

Coagulation profile: As used herein, coagulation profile refers generally to the functioning of the coagulation system. Both the tissue factor (extrinsic) and contact activation (intrinsic) pathways of clotting are components of the coagulation profile. A normal coagulation profile refers to coagulation functioning as in a normal, healthy individual, i.e., maintaining balance between ability to control bleeding and tendency towards excessive clotting (thrombotic tendency). An abnormal coagulation profile may be a decrease or an increase in coagulation tendency. One particularly abnormal coagulation profile is hypercoagulation, which refers to a greatly increased risk of excessive clot formation, resulting in high risk of thrombosis. Coagulation profile may be assessed by various tests and assays known in the art, such as: the activated partial thromboplastin time (aPTT) test; prothrombin time (PT) test (typical reference range of 12 to 15 second); measurements derived from the PT test, such as prothrombin ratio (PR) and international normalized ratio (INA) (typical reference range 0.8 to 1.2); fibrinogen testing (e.g. the Clauss method (Clauss A, "Rapid Physiological Coagulation Method for the Determination of Fibrinogen [German]," Acta Haematol, 1957, 17:237-46) or the Ellis method (Ellis B C and Stransky A, "A Quick and Accurate Method for the Determination of Fibrinogen in Plasma," J Lab Clin Med, 1961, 58:477-88); assays for activated protein C resistance, protein C, protein S, and antithrombin; assays for antiphospholipid antibodies (lupus anticoagulant and anticardiolipin antibodies); elevated homocysteine; assays for plasminogen, dysfibrinogenemia, heparin cofactor II, or platelet hyperaggregability. Other assays useful to assess coagulation profile include measurement of clotting factors and/or indicators of clotting, such as serum levels of D-dimer, Factor 11, Factor V, Factor VIII, Factor IX, Factor XI, Factor XII, F/fibrin degradation products, thrombin-antithrombin III complex, thrombocytosis, fibrinogen, plasminogen, prothrombin, and von Willebrand factor. Worsening in coagulation profile refers to a measurable change in an indicator of coagulation, e.g., any of the aforementioned assays, that reflects a deterioration of the normal coagulation tendency, such that the measured value becomes abnormal or deviates farther from the normal range than previously. Improvement in coagulation profile refers to a measurable change in an indicator of coagulation, e.g., any of the aforementioned assays, that reflects a partial or full restoration of the normal coagulation tendency, i.e., after a therapeutic intervention, such as administration of an anti-IL-6 antibody, the measured value is in the normal range or closer to the normal range than prior to the therapeutic intervention.

Disease or condition: As used herein, "disease or condition" refers to a disease or condition that a patient has been diagnosed with or is suspected of having, particularly a disease or condition associated with elevated IL-6. A disease or condition encompasses, without limitation thereto, the side-effects of medications or treatments (such as radiation therapy), as well as idiopathic conditions characterized by symptoms that include elevated IL-6.

Cachexia: As used herein, cachexia, also known as wasting disease, refers to any disease marked especially by progressive emaciation, weakness, general ill health, malnutrition, loss of body mass, loss of muscle mass, or an accelerated loss of skeletal muscle in the context of a chronic inflammatory response (reviewed in Kotler, Ann Intern Med. 2000 Oct. 17; 133(8):622-34). Diseases and conditions in which cachexia is frequently observed include cancer, rheumatoid arthritis, AIDS, heart disease, dehydration, malnutrition, lead exposure, malaria, respiratory disease, old age, hypothyroidism, tuberculosis, hypopituitarism, neurasthenia, hypernatremia, hyponatremia, renal disease, splenica, ankylosing spondylitis, failure to thrive (faltering growth) and other diseases, particularly chronic diseases. Cachexia may also be idiopathic (arising from an uncertain cause). Weight assessment in a patient is understood to exclude growths or fluid accumulations, e.g. tumor weight, extravascular fluid accumulation, etc. Cachexia may be assessed by measurement of a patient's total body mass (exclusive of growths r fluid accumulations), total lean (fat-free) body mass, lean mass of the arms and legs (appendicular lean mass, e.g. measured using dual-energy x-ray absorptiometry or bioelectric impedance spectroscopy), and/or lean body mass index (lean body mass divided by the square of the patient's height), See Kotler, Ann Intern Med. 2000 Oct. 17; 133(8):622-34; Marcora et al., Rheumatology (Oxford). 2006 November; 45(11):1385-8.

Weakness: As used herein, weakness refers physical fatigue, which typically manifests as a loss of muscle strength and/or endurance. Weakness may be central (affecting most or all of the muscles in the body) or peripheral (affecting a subset of muscles). Weakness includes "true weakness," in which a patient's muscles have a decrease in some measure of peak and/or sustained force output, and "perceived weakness," in which a patient perceives that a greater effort is required for performance of a task even though objectively measured strength remains nearly the same, and may be objectively measured or self-reported by the patient. For example, weakness may be objectively measured using the hand grip strength test (a medically recognized test for evaluating muscle strength), typically employing a handgrip dynamometer.

Fatigue: As used herein, fatigue refers to mental fatigue (for physical fatigue see "weakness"). Fatigue includes drowsiness (somnolence) and/or decreased attention. Fatigue may be measured using a variety of tests known in the art, such as the FACIT-F (Functional Assessment of Chronic Illness Therapy-Fatigue) test. See, e.g., Cella, D., Lai, J. S., Chang, C. H., Peterman, A., & Slavin, M. (2002). Fatigue in cancer patients compared with fatigue in the general population. Cancer, 94(2), 528-538; Cella, D., Eton, D. T., Lai, F J-S., Peterman, A. H & Merkel, D. E. (2002). Combining anchor and distribution based methods to derive minimal clinically important differences on the Functional Assessment of Cancer Therapy anemia and fatigue scales. Journal of Pain & Symptom Management, 24 (6) 547-561.

Fever: As used herein, "fever" refers to a body temperature set-point that is elevated by at least 1 to 2 degrees Celsius. Fever is often associated with a subjective feeling of hypothermia exhibited as a cold sensation, shivering, increased heart rate and respiration rate by which the individual's body reaches the increased set-point. As is well understood in the medical arts, normal body temperature typically varies with activity level and time of day, with highest temperatures observed in the afternoon and early evening hours, and lowest temperatures observed during the second half of the sleep cycle, and temperature measurements may be influenced by external factors such as mouth breathing, consumption of food or beverage, smoking, or ambient temperature (depending on the type of measurement). Moreover, the normal temperature set point for individuals may vary by up to about 0.5 degrees Celsius, thus a medical professional may interpret an individual's temperature in view of these factors to diagnose whether a fever is present. Generally speaking, a fever is typically diagnosed by a core body temperature above 38.0 degrees Celsius, an oral temperature above 37.5 degrees Celsius, or an axillary temperature above 37.2 degrees Celsius.

Improved: As used herein, "improved," "improvement," and other grammatical variants, includes any beneficial change resulting from a treatment. A beneficial change is any way in which a patient's condition is better than it would have been in the absence of the treatment, "Improved" includes prevention of an undesired condition, slowing the rate at which a condition worsens, delaying the development of an undesired condition, and restoration to an essentially normal condition. For example, improvement in cachexia encompasses any increase in patient's mass, such as total body mass (excluding weight normally excluded during assessment of cachexia, e.g. tumor weight, extravascular fluid accumulation, etc.), lean body mass, and/or appendicular lean mass, as well as any delay or slowing in the rate of loss of mass, or prevention or slowing of loss of mass associated with a disease or condition with which the patient has been diagnosed. For another example, improvement in weakness encompasses any increase in patient's strength, as well as any delay or slowing in the rate of loss of strength, or prevention or slowing of loss of strength associated with a disease or condition with which the patient has been diagnosed. For yet another example, improvement in fatigue encompasses any decrease in patient's fatigue, as well as any delay or slowing in the rate of increase of fatigue, or prevention or slowing of increase in fatigue associated with a disease or condition with which the patient has been diagnosed. For still another example, improvement in fever encompasses any decrease in patient's fever, as well as any delay or slowing in the rate of increase in fever, or prevention or slowing of increase in fever associated with a disease or condition with which the patient has been diagnosed.

C-Reactive Protein (CRP): As used herein, C-Reactive Protein (CRP) encompasses not only the following 224 amino acid sequence available as GenBank Protein Accession No. NP_000558:

MEKLLCFLVLTSLSHAFGQTDMSRKAFVFPKESDTSYVSLKAPLTKPLKAFTVCLHFYT ELSSTRGYSIFSYATKRQDNEILIFWSKDIGYSFTVGGSEILFEVPEVTVAPVHICTSWESA SGIVEFWVDGKPRVRKSLKKGYTVGAEASHLGQEQDSFGGNFEGSQSLVGDIGNVNM WDFVLSPDEINTIYLGGPFSPNVLNWRALKYEVQGEVFTKPQLWP (SEQ ID NO: 726), but also any pre-pro, pro- and mature forms of this CRP amino acid sequence, as well as mutants and variants including allelic variants of this sequence. CRP levels, e.g. in the serum, liver, tumor, or elsewhere in the body, can be readily measured using routine methods and commercially available reagents, e.g. ELISA, antibody test strip, immunoturbidimetry, rapid immunodiffusion, visual agglutination, Western blot, Northern blot, etc. As mentioned above CRP levels may in addition be measured in patients having or at risk of developing thrombosis according to the invention.

Interleukin-6 receptor (IL-6R); also called IL-6 receptor alpha (IL-6RA): As used herein, "interleukin-6 receptor" ("IL-6R"; also "IL-6 receptor alpha" or "IL-6RA") encompasses not only the following 468 amino acid sequence available as Swiss-Prot Protein Accession No. P08887:

MLAVGCALLAALLAAPGAALAPRRCPAQEVARGVLTSLPGDSVTLTCPGVEPEDNATV HWVLRKPAAGSHPSRWAGMGRRLLLRSVQLHDSGNYSCYRAGRPAGTVHLLVDVPPE EPQLSCFRKSPLSNVVCEWGPRSTPSLTTKAVLLVRKFQNSPAEDFQEPCQYSQESQKFS CQLAVPEGDSSFYIVSMCVASSVGSKFSKTQTFQGCGILQPDPPANITVTAVARNPRWLS VTWQDPHSWNSSFYRLRFELRYRAERSKTFTTWMVKDLQHHCVIHDAWSGLRHVVQL RAQEEFGQGEWSEWSPEAMGTPWTESRSPPAENEVSTPMQALTTNKDDDNILFRDSAN ATSLPVQDSSSVPLPTFLVAGGSLAFGTLLCIAIVLRFKKTWKLRALKEGKTSMHPPYSL GQLVPERPRPTPVLVPLISPPVSPSSLGSDNTSSHNRPDARDPRSPYDISNTDYFFPR (SEQ ID NO: 727), but also any pre-pro, pro- and mature forms of this amino acid sequence, as well as mutants and variants including allelic variants or this sequence.

gp130: As used herein, gp130 (also called Interleukin-6 receptor subunit beta) encompasses not only the following 918 precursor amino acid sequence available as Swiss-Prot Protein Accession No. P40189:

MLTLQTWVVQALFIFLTTESTGELLDPCGYISPESPVVQLHSNFTAVCVLKEKCMDYFH VNANYIVWKTNHFTIPKEQYTIINRTASSVTFTDIASLNIQLTCNILTFGQLEQNVYGITIIS GLPPEKPKNLSCIVNEGKKMRCEWDGGRETHLETNFTLKSEWATHKFADCKAKRDTPT SCTVDYSTVYFVNIEVWVEAENALGKVTSDHINFDPVYKVKPNPPHNLSVINSEELSSIL KLTWTNPSIKSVIILKYNIQYRTKDASTWSQIPPEDTASTRSSFTVQDLKPFTEYVFRIRC MKEDGKGYWSDWSEEASGITYEDRPSKAPSFWYKIDPSHTQGYRTVQLVWKTLPPFEA NGKILDYEVTLTRWKSHLQNYTVNATKLTVNLTNDRYLATLTVRNLVGKSDAAVLTIP ACDFQATHPVMDLKAFPKDNMLWVEWTTPRESVKKYILEWCVLSDKAPCITDWQQED GTVHRTYLRGNLAESKCYLITVTPVYADGPGSPESIKAYLKQAPPSKGPTVRTKKVGKN EAVLEWDQLPVDVQNGFIRNYTIFYRTIIGNETAVNVDSSHTEYTLSSLTSDTLYMVRM AAYTDEGGKDGPEFTFTTPKFAQGEIEAIVVPVCLAFLLTTLLGVLFCFNKRDLIKKHIWP NVPDPSKSHIAQWSPHTPPRHNFNSKDQMYSDGNFTDVSVVEIEANDKKPFPEDLKSLD LFKKEKINTEGHSSGIGGSSCMSSSRPSISSSDENESSQNTSSTVQYSTVVHSGYRHQVPS VQVFSRSESTQPLLDSEERPEDLQLVDHVDGGDGILPRQQYFKQNCSQHESSPDISHFER SKQVSSVNEEDFVRLKQQISDHISQSCGSGQMKMFQEVSAADAFGPGTEGQVERFETVG MEAATDEGMPKSYLPQTVRQGGYMPQ (SEQ ID NO: 728), but also any pre-pro, pro- and mature forms of this amino acid sequence, such as the mature form encoded by amino acids 23 through 918 of the sequence shown, as well as mutants and variants including allelic variants of this sequence.

Glasgow Prognostic Score (GPS): As used herein, Glasgow Prognostic Score (UPS) refers to an inflammation-based prognostic score that awards one point for a serum albumin level less than <35 mg/L and one point for a CRP level above 10 mg/L. Thus, a GPS of 0 indicates normal albumin and CRP, a GPS of 1 indicates reduced albumin or elevated CRP, and a UPS of 2 indicates both reduced albumin and elevated CRP.

Effective amount: As used herein, "effective amount," "amount effective to," "amount of X effective to" and the like, refer to an amount of an active ingredient that is effective to relieve or reduce to some extent one or more of the symptoms of the disease in need of treatment, or to retard initiation of clinical markers or symptoms of a disease in need of prevention, when the compound is administered. Thus, an effective amount refers to an amount of the active ingredient which exhibit effects such as (1) reversing the rate of progress of a disease; (ii) inhibiting to some extent further progress of the disease; and/or, (iii) relieving to some extent (or, preferably, eliminating) one or more symptoms associated with the disease. The effective amount may be empirically determined by experimenting with the compounds concerned in known in vivo and in vitro model systems for a disease in need of treatment. The context in which the phrase "effective amount" is used may indicate a particular desired effect. For example, "an amount of an anti-IL-6 antibody effective to prevent or treat a hypercoagulable state" and similar phrases refer to an amount of anti-IL-6 antibody that, when administered to a subject, will cause a measurable improvement in the subject's coagulation profile, or prevent, slow, delay, or arrest, a worsening of the coagulation profile for which the subject is at risk. Similarly, "an amount of an anti-IL-6 antibody effective to reduce scrum CRP levels" and similar phrases refer to an amount of anti-IL-6 antibody that, when administered to a subject, will cause a measurable decrease in scrum CRP levels, or prevent, slow, delay, or arrest, an increase in serum CRP levels for which the subject is at risk. Similarly, "an amount of an anti-IL-6 antibody effective to increase serum albumin levels" and similar phrases refer to an amount of anti-IL-6 antibody that, when administered to a subject, will cause a measurable increase in serum albumin levels, or prevent, slow, delay, or arrest, a decrease in serum albumin levels for which the subject is at risk. Similarly, "an amount of an anti-IL-6 antibody effective to reduce weakness" and similar phrases refer to an amount of anti-IL-6 antibody that, when administered to a subject, will cause a measurable decrease in weakness as determined by the hand grip strength test. Similarly, "an amount of an anti-IL-6 antibody effective to increase weight" and similar phrases refer to an amount of anti-IL-6 antibody that, when administered to a subject, will cause a measurable increase in a patient's weight. An effective amount will vary according to the weight, sex, age and medical history of the individual, as well as the severity of the patient's condition(s), the type of disease(s), mode of administration, and the like. An effective amount may be readily determined using routine experimentation, e.g., by titration (administration of increasing dosages until an effective dosage is found) and/or by reference to amounts that were effective for prior patients. Generally, the anti-IL-6 antibodies of the present invention will be administered in dosages ranging between about 0.1 mg/kg and about 20 mg/kg of the patient's body-weight.

Prolonged improvement in coagulation profile: As used herein, "prolonged improvement in coagulation profile" and similar phrases refer to a measurable improvement in the subject's coagulation profile relative to the initial coagulation profile (i.e. the coagulation profile at a time before treatment begins) that is detectable within about a week from when treatment begins (e.g. administration of an IL-6 antagonist such as Ab1) and remains improved for a prolonged duration, e.g., at least about 14 days, at least about 21 days, at least about 28 days, at least about 35 days, at least about 40 days, at least about 50 days, at least about 60 days, at least about 70 days, at least about 11 weeks, or at least about 12 weeks from when the treatment begins.

Prolonged reduction in serum CRP: As used herein, "prolonged reduction in scrum CRP" and similar phrases refer to a measurable decrease in serum CRP level relative to the initial serum CRP level (i.e. the serum CRP level at a time before treatment begins) that is detectable within about a week from when a treatment begins (e.g. administration of an anti-IL-6 antibody) and remains below the initial scrum CRP level for an prolonged duration, e.g. at least about 14 days, at least about 21 days, at least about 28 days, at least about 35 days, at least about 40 days, at least about 50 days, at least about 60 days, at least about 70 days, at least about 11 weeks, or at least about 12 weeks from when the treatment begins.

Prolonged increase in serum albumin: As used herein, "prolonged increase in serum albumin" and similar phrases refer to a measurable decrease in serum albumin level relative to the initial serum albumin level (i.e. the serum albumin level at a time before treatment begins) that is detectable within about a week from when a treatment begins (e.g. administration of an anti-IL-6 antibody) and remains above the initial serum albumin level for an prolonged duration, e.g. at least about 14 days, at least about 21 days, at least about 28 days, at least about 35 days, at least about 40 days, at least about 50 days, at least about 60 days, at least about 70 days, at least about 11 weeks, or at least about 12 weeks from when the treatment begins.

Prolonged improvement in cachexia: As used herein, "prolonged improvement in cachexia" refers to a measurable improvement patient's body mass, lean body mass, appendicular lean body mass, and/or lean body mass index, relative to the initial level (i.e. the level at a time before treatment begins) that is detectable within about 4 weeks and remains improved for a prolonged duration, e.g., at least about 35 days, at least about 40 days, at least about 50 days, at least about 60 days, at least about 70 days, at least about 31 weeks, or at least about 12 weeks from when the treatment begins.

Prolonged improvement in weakness: As used herein, "prolonged improvement in weakness" refers to a measurable improvement in muscular strength, relative to the initial level (i.e. the level at a time before treatment begins) that is detectable within about 2 weeks and remains improved for a prolonged duration, e.g. at least about 21 days, at least about 28 days, at least about 35 days, at least about 40 days, at least about 50 days, at least about 60 days, at least about 70 days, at least about 11 weeks, or at least about 12 weeks from when the treatment begins.

Prolonged improvement in fatigue: As used herein, "prolonged improvement in fatigue" refers to a measurable improvement in fatigue, relative to the initial level (i.e. the level at a time before treatment begins) that is detectable within about 1 week and remains improved for a prolonged duration, e.g. at least about 14 days, at least about 21 days, at least about 28 days, at least about 35 days, at least about 40 days, at least about 50 days, at least about 60 days, at least about 70 days, at least about 11 weeks, or at least about 12 weeks from when the treatment begins.

Prolonged improvement in fever: As used herein, "prolonged improvement in fever" refers to a measurable decrease in fever (e.g. peak temperature or amount of time that temperature is elevated), relative to the initial level (i.e. the level at a time before treatment begins) that is detectable within about 1 week and remains improved for a prolonged duration, e.g. at least about 14 days, at least about 21 days, at least about 28 days, at least about 35 days, at least about 40 days, at least about 50 days, at least about 60 days, at least about 70 days, at least about 11 weeks, or at least about 12 weeks from when the treatment begins.

Mating competent yeast species: In the present invention this is intended to broadly encompass any diploid or tetraploid yeast which can be grown in culture. Such species of yeast may exist in a haploid, diploid, or tetraploid form. The cells of a given ploidy may, under appropriate conditions, proliferate for indefinite number of generations in that form. Diploid cells can also sporulate to form haploid cells. Sequential mating can result in tetraploid strains through further mating or fusion of diploid strains. In the present invention the diploid or polyploidal yeast cells are preferably produced by mating or spheroplast fusion.

In one embodiment of the invention, the mating competent yeast is a member of the Saccharomycetaceae family, which includes the genera Arxiozyma; Ascobotryozyma; Citeromyces; Debaryomyces; Dekkera; Eremothecium; Issatchenkia; Kazachstania; Kluyveromyces; Kodamaea; Lodderomyces; Pachysolen; Pichia; Saccharomyces; Saturnispora; Tetrapisispora; Torulaspora; Williopsis; and Zygosaccharomyces. Other types of yeast potentially useful in the invention include Yarrowia, Rhodosporidium, Candida, Hansenula, Filobasium, Filobasidellla, Sporidiobolus, Bullera, Leucosporidium and Filobasidella.

In a preferred embodiment of the invention, the mating competent yeast is a member of the genus Pichia. In a further preferred embodiment of the invention, the mating competent yeast of the genus Pichia is one of the following species: Pichia pastoris, Pichia methanolica, and Hansenula polymorpha (Pichia angusta). In a particularly preferred embodiment of the invention, the mating competent yeast of the genus Pichia is the species Pichia pastoris.

Haploid Yeast Cell: A cell having a single copy of each gene of its normal genomic (chromosomal) complement.

Polyploid Yeast Cell: A cell having more than one copy of its normal genomic (chromosomal) complement.

Diploid Yeast Cell: A cell having two copies (alleles) of essentially every gene of its normal genomic complement, typically formed by the process of fusion (mating) of two haploid cells.

Tetraploid Yeast Cell: A cell having four copies (alleles) of essentially every gene of its normal genomic complement, typically formed by the process of fusion (mating) of two haploid cells. Tetraploids may carry two, three, four, or more different expression cassettes. Such tetraploids might be obtained in S. cerevisiae by selective mating homozygotic heterothallic a/a and alpha/alpha diploids and in Pichia by sequential mating of haploids to obtain auxotrophic diploids. For example, a [met his] haploid can be mated with [ade his] haploid to obtain diploid [his]; and a [met arg] haploid can be mated with [ade arg] haploid to obtain diploid [arg]; then the diploid [his].times.diploid [arg] to obtain a tetraploid prototroph. It will be understood by those of skill in the art that reference to the benefits and uses of diploid cells may also apply to tetraploid cells.

Yeast Mating: The process by which two haploid yeast cells naturally fuse to form one diploid yeast cell.

Meiosis: The process by which a diploid yeast cell undergoes reductive division to form four haploid spore products. Each spore may then germinate and form a haploid vegetatively growing cell line.

Selectable Marker: A selectable marker is a gene or gene fragment that confers a growth phenotype (physical growth characteristic) on a cell receiving that gene as, for example through a transformation event. The selectable marker allows that cell to survive and grow in a selective growth medium under conditions in which cells that do not receive that selectable marker gene cannot grow. Selectable marker genes generally fall into several types, including positive selectable marker genes such as a gene that confers on a cell resistance to an antibiotic or other drug, temperature when two is mutants are crossed or a is mutant is transformed; negative selectable marker genes such as a biosynthetic gene that confers on a cell the ability to grow in a medium without a specific nutrient needed by all cells that do not have that biosynthetic gene, or a mutagenized biosynthetic gene that confers on a cell inability to grow by cells that do not have the wild type gene; and the like. Suitable markers include but are not limited to: ZEO; 0418; LYS3; MET1; MET3a; ADE1; ADE3; URA3; and the like.

Expression Vector: These DNA vectors contain elements that facilitate manipulation for the expression of a foreign protein within the target host cell. Conveniently, manipulation of sequences and production of DNA for transformation is first performed in a bacterial host, e.g. E. coli, and usually vectors will include sequences to facilitate such manipulations, including a bacterial origin of replication and appropriate bacterial selection marker. Selection markers encode proteins necessary for the survival or growth of transformed host cells grown in a selective culture medium. Host cells not transformed with the vector containing the selection gene will not survive in the culture medium. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media. Exemplary vectors and methods for transformation of yeast are described, for example, in Burke, D., Dawson, D., & Stearns, T. (2000). Methods in yeast genetics: a Cold Spring Harbor Laboratory course manual. Plainview, N.Y.: Cold Spring Harbor Laboratory Press.

Expression vectors for use in the methods of the invention will further include yeast specific sequences, including a selectable auxotrophic or drug marker for identifying transformed yeast strains. A drug marker may further be used to amplify copy number of the vector in a yeast host cell.

The polypeptide coding sequence of interest is operably linked to transcriptional and translational regulatory sequences that provide for expression of the polypeptide in yeast cells. These vector components may include, but are not limited to, one or more of the following: an enhancer element, a promoter, and a transcription termination sequence. Sequences for the secretion of the polypeptide may also be included, e.g. a signal sequence, and the like. A yeast origin of replication is optional, as expression vectors are often integrated into the yeast genome.

In one embodiment of the invention, the polypeptide of interest is operably linked, or fused, to sequences providing for optimized secretion of the polypeptide from yeast diploid cells.

Nucleic acids are "operably linked" when placed into a functional relationship with another nucleic acid sequence. For example, DNA for a signal sequence is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence. Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading frame. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites or alternatively via a PCR/recombination method familiar to those skilled in the art (Gateway.RTM. Technology; Invitrogen, Carlsbad Calif.). If such sites do not exist, the synthetic oligonucleotide adapters or linkers are used in accordance with conventional practice.

Promoters are untranslated sequences located upstream (5') to the start codon of a structural gene (generally within about 100 to 1000 bp) that control the transcription and translation of particular nucleic acid sequences to which they are operably linked. Such promoters fall into several classes: inducible, constitutive, and repressible promoters (that increase levels of transcription in response to absence of a repressor). Inducible promoters may initiate increased levels of transcription from DNA under their control in response to some change in culture conditions, e.g., the presence or absence of a nutrient or a change in temperature.

The yeast promoter fragment may also serve as the site for homologous recombination and integration of the expression vector into the same site in the yeast genome; alternatively a selectable marker is used as the site for homologous recombination. Pichia transformation is described in Cregg et al. (1985) Mol. Cell. Biol. 5:3376-3385.

Examples of suitable promoters from Pichia include the AOX1 and promoter (Cregg et al. (1989) Mol. Cell. Biol. 9:1316-1323); ICL1 promoter (Menendez et al. (2003) Yeast 20(13):1097-108); glyceraldehyde-3-phosphate dehydrogenase promoter (GAP) (Waterham et al. (1997) Gene 186(0:37-44); and FLD1 promoter (Shen et al. (1998) Gene 216(0:93-102). The GAP promoter is a strong constitutive promoter and the AOX and FLD1 promoters are inducible.

Other yeast promoters include ADH1, alcohol dehydrogenase II, GAL4, PHO3, PHO5, Pyk, and chimeric promoters derived therefrom. Additionally, non-yeast promoters may be used in the invention such as mammalian, insect, plant, reptile, amphibian, viral, and avian promoters. Most typically the promoter will comprise a mammalian promoter (potentially endogenous to the expressed genes) or will comprise a yeast or viral promoter that provides for efficient transcription in yeast systems.

The polypeptides of interest may be produced recombinantly not only directly, but also as a fusion polypeptide with a heterologous polypeptide, e.g. a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide. In general, the signal sequence may be a component of the vector, or it may be a part of the polypeptide coding sequence that is inserted into the vector. The heterologous signal sequence selected preferably is one that is recognized and processed through one of the standard pathways available within the host cell. The S. cerevisiae alpha factor pre-pro signal has proven effective in the secretion of a variety of recombinant proteins from P. pastoris. Other yeast signal sequences include the alpha mating factor signal sequence, the invertase signal sequence, and signal sequences derived from other secreted yeast polypeptides. Additionally, these signal peptide sequences may be engineered to provide far enhanced secretion in diploid yeast expression systems. Other secretion signals of interest also include mammalian signal sequences, which may be heterologous to the protein being secreted, or may be a native sequence for the protein being secreted. Signal sequences include pre-peptide sequences, and in some instances may include propeptide sequences. Many such signal sequences are known in the art, including the signal sequences found on immunoglobulin chains, e.g., K28 preprotoxin sequence, PHA-E, FACE, human MCP-1, human serum albumin signal sequences, human Ig heavy chain, human Ig light chain, and the like. For example, see Hashimoto et. al. Protein Eng 11(2) 75 (1998); and Kobayashi et. al. Therapeutic Apheresis 2(4) 257 (1998).

Transcription may be increased by inserting a transcriptional activator sequence into the vector. These activators are cis-acting elements of DNA, usually about from 10 to 300 bp, which act on a promoter to increase its transcription. Transcriptional enhancers are relatively orientation and position independent, having been found 5' and 3' to the transcription unit, within an intron, as well as within the coding sequence itself. The enhancer may be spliced into the expression vector at a position 5' or 3' to the coding sequence, but is preferably located at a site 5' from the promoter.

Expression vectors used in eukaryotic host cells may also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from 3' to the translation termination codon, in untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA.

Construction of suitable vectors containing one or more of the above-listed components employs standard ligation techniques or PCR/recombination methods. Isolated plasmids or DNA fragments are cleaved, tailored, and re-ligated in the form desired to generate the plasmids required or via recombination methods. For analysis to confirm correct sequences in plasmids constructed, the ligation mixtures are used to transform host cells, and successful transformants selected by antibiotic resistance (e.g. ampicillin or Zeocin.TM. (phleomycin)) where appropriate. Plasmids from the transformants are prepared, analyzed by restriction endonuclease digestion and/or sequenced.

As an alternative to restriction and ligation of fragments, recombination methods based on att sites and recombination enzymes may be used to insert DNA sequences into a vector. Such methods are described, for example, by Landy (1989) Ann. Rev. Biochem. 58:913-949; and are known to those of skill in the art. Such methods utilize intermolecular DNA recombination that is mediated by a mixture of lambda and E. coli encoded recombination proteins. Recombination occurs between specific attachment (att) sites on the interacting DNA molecules. For a description of att sites see Weisberg and Landy (1983) Site-Specific Recombination in Phage Lambda, in Lambda II, Weisberg, ed. (Cold Spring Harbor, N.Y.: Cold Spring Harbor Press), pp. 211-250. The DNA segments flanking the recombination sites are switched, such that after recombination, the att sites are hybrid sequences comprised of sequences donated by each parental vector. The recombination can occur between DNAs of any topology.

Att sites may be introduced into a sequence of interest by ligating the sequence of interest into an appropriate vector; generating a PCR product containing att B sites through the use of specific primers; generating a cDNA library cloned into an appropriate vector containing att sites; and the like.

Folding, as used herein, refers to the three-dimensional structure of polypeptides and proteins, where interactions between amino acid residues act to stabilize the structure. While non-covalent interactions are important in determining structure, usually the proteins of interest will have intra- and/or intermolecular covalent disulfide bonds formed by two cysteine residues. For naturally occurring proteins and polypeptides or derivatives and variants thereof, the proper folding is typically the arrangement that results in optimal biological activity, and can conveniently be monitored by assays for activity, e.g. ligand binding, enzymatic activity, etc.

In some instances, for example where the desired product is of synthetic origin, assays based on biological activity will be less meaningful. The proper folding of such molecules may be determined on the basis of physical properties, energetic considerations, modeling studies, and the like.

The expression host may be further modified by the introduction of sequences encoding one or more enzymes that enhance folding and disulfide bond formation, i.e. foldases, chaperonins, etc. Such sequences may be constitutively or inducibly expressed in the yeast host cell, using vectors, markers, etc. as known in the art. Preferably the sequences, including transcriptional regulatory elements sufficient for the desired pattern of expression, are stably integrated in the yeast genome through a targeted methodology.

For example, the eukaryotic PD1 is not only an efficient catalyst of protein cysteine oxidation and disulfide bond isomerization, but also exhibits chaperone activity. Co-expression of PD1 can facilitate the production of active proteins having multiple disulfide bonds. Also of interest is the expression of RIP (immunoglobulin heavy chain binding protein); cyclophilin; and the like. In one embodiment of the invention, each of the haploid parental strains expresses a distinct folding enzyme, e.g. one strain may express RIP, and the other strain may express PD1 or combinations thereof.

The terms "desired protein" or "target protein" are used interchangeably and refer generally to a humanized antibody or a binding portion thereof described herein. The term "antibody" is intended to include any polypeptide chain-containing molecular structure with a specific shape that fits to and recognizes an epitope, where one or more non-covalent binding interactions stabilize the complex between the molecular structure and the epitope. The archetypal antibody molecule is the immunoglobulin, and all types of immunoglobulins, IgG, IgM, IgA, IgE, IgD, etc., from all sources, e.g. human, rodent, rabbit, cow, sheep, pig, dog, other mammals, chicken, other avians, etc., are considered to be "antibodies." A preferred source for producing antibodies useful as starting material according to the invention is rabbits. Numerous antibody coding sequences have been described; and others may be raised by methods well-known in the art. Examples thereof include chimeric antibodies, human antibodies and other non-human mammalian antibodies, humanized antibodies, single chain antibodies such as scFvs, camelbodies, nanobodies, IgNAR (single-chain antibodies derived from sharks), small-modular immunopharmaceuticals (SMIPs), and antibody fragments such as Fabs, Fab', F(ab').sub.2 and the like. See Streltsov V A, et al., Structure of a shark IgNAR antibody variable domain and modeling of an early-developmental isotype, Protein Sci, 2005 November; 14(11):2901-9. Epub 2005 Sep. 30; Greenberg A S, et al., A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks, Nature. 1995 Mar. 9; 374(6518):168-73; Nuttall S D, et al., Isolation of the new antigen receptor from wobbegong sharks, and use as a scaffold for the display of protein loop libraries, Mol Immunol. 2001 August; 38(4):313-26; Hamers-Casterman C, et al., Naturally occurring antibodies devoid of light chains, Nature. 1993 Jun. 3; 363(6428):446-8; Gill D S, et al., Biopharmaceutical drug discovery using novel protein scaffolds, Curr Opin Biotechnol. 2006 December; 17(6):653-8. Epub 2006 Oct. 19.

For example, antibodies or antigen binding fragments or variants thereof may be produced by genetic engineering. In this technique, as with other methods, antibody-producing cells are sensitized to the desired antigen or immunogen. The messenger RNA isolated from antibody producing cells is used as a template to make cDNA using PCR amplification. A library of vectors, each containing one heavy chain gene and one light chain gene retaining the initial antigen specificity, is produced by insertion of appropriate sections of the amplified immunoglobulin cDNA into the expression vectors. A combinatorial library is constructed by combining the heavy chain gene library with the light chain gene library. This results in a library of clones which co-express a heavy and light chain (resembling the Fab fragment or antigen binding fragment of an antibody molecule). The vectors that carry these genes are co-transfected into a host cell. When antibody gene synthesis is induced in the transfected host, the heavy and light chain proteins self-assemble to produce active antibodies that can be detected by screening with the antigen or immunogen.

Antibody coding sequences of interest include those encoded by native sequences, as well as nucleic acids that, by virtue of the degeneracy of the genetic code, are not identical in sequence to the disclosed nucleic acids, and variants thereof. Variant polypeptides can include amino acid (aa) substitutions, additions or deletions. The amino acid substitutions can be conservative amino acid substitutions or substitutions to eliminate non-essential amino acids, such as to alter a glycosylation site, or to minimize misfolding by substitution or deletion of one or more cysteine residues that are not necessary for function. Variants can be designed so as to retain or have enhanced biological activity of a particular region of the protein (e.g., a functional domain, catalytic amino acid residues, etc). Variants also include fragments of the polypeptides disclosed herein, particularly biologically active fragments and/or fragments corresponding to functional domains. Techniques for in vitro mutagenesis of cloned genes are known. Also included in the subject invention are polypeptides that have been modified using ordinary molecular biological techniques so as to improve their resistance to proteolytic degradation or to optimize solubility properties or to render them more suitable as a therapeutic agent.

Chimeric antibodies may be made by recombinant means by combining the variable light and heavy chain regions (V.sub.L and V.sub.H), obtained from antibody producing cells of one species with the constant light and heavy chain regions from another. Typically chimeric antibodies utilize rodent or rabbit variable regions and human constant regions, in order to produce an antibody with predominantly human domains. The production of such chimeric antibodies is well known in the art, and may be achieved by standard means (as described, e.g., in U.S. Pat. No. 5,624,659, incorporated herein by reference in its entirety). It is further contemplated that the human constant regions of chimeric antibodies of the invention may be selected from IgG1, IgG2, IgG3, IgG4, IgG5, IgG6, IgG7, IgG8, IgG9, IgG10, IgG11, IgG12, IgG13, IgG14, IgG15, IgG16, IgG17, IgG18 or IgG19 constant regions.

Humanized antibodies are engineered to contain even more human-like immunoglobulin domains, and incorporate only the complementarity-determining regions of the animal-derived antibody. This is accomplished by carefully examining the sequence of the hyper-variable loops of the variable regions of the monoclonal antibody, and fitting them to the structure of the human antibody chains. Although facially complex, the process is straightforward in practice. See, e.g., U.S. Pat. No. 6,187,287, incorporated fully herein by reference. In a preferred embodiment, humanization may be effected as disclosed in detail infra. This scheme grafts CDRs onto human FRs highly homologous to the parent antibody that is being humanized.

In addition to entire immunoglobulins (or their recombinant counterparts), immunoglobulin fragments comprising the epitope binding site (e.g., Fab', F(ab').sub.2, or other fragments) may be synthesized. "Fragment," or minimal immunoglobulins may be designed utilizing recombinant immunoglobulin techniques. For instance "Fv" immunoglobulins for use in the present invention may be produced by synthesizing a fused variable light chain region and a variable heavy chain region. Combinations of antibodies are also of interest, e.g. diabodies, which comprise two distinct Fv specificities. In another embodiment of the invention, SMIPs (small molecule immunopharmaceuticals), camelbodies, nanobodies, and IgNAR are encompassed by immunoglobulin fragments.

Immunoglobulins and fragments thereof may be modified post-translationally, e.g. to add effector moieties such as chemical linkers, detectable moieties, such as fluorescent dyes, enzymes, toxins, substrates, bioluminescent materials, radioactive materials, chemiluminescent moieties and the like, or specific binding moieties, such as streptavidin, avidin, or biotin, and the like may be utilized in the methods and compositions of the present invention. Examples of additional effector molecules are provided infra.

The term "polyploid yeast that stably expresses or expresses a desired secreted heterologous polypeptide for prolonged time" refers to a yeast culture that secretes said polypeptide for at least several days to a week, more preferably at least a month, still more preferably at least 1-6 months, and even more preferably for more than a year at threshold expression levels, typically at least 10-25 mg/liter and preferably substantially greater.

The term "polyploidal yeast culture that secretes desired amounts of recombinant polypeptide" refers to cultures that stably or for prolonged periods secrete at least 10-25 mg/liter of heterologous polypeptide, more preferably at least 50-500 mg/liter, and most preferably 500-1000 mg/liter or more.

A polynucleotide sequence "corresponds" to a polypeptide sequence if translation of the polynucleotide sequence in accordance with the genetic code yields the polypeptide sequence (i.e., the polynucleotide sequence "encodes" the polypeptide sequence), one polynucleotide sequence "corresponds" to another polynucleotide sequence if the two sequences encode the same polypeptide sequence.

A "heterologous" region or domain of a DNA construct is an identifiable segment of DNA within a larger DNA molecule that is not found in association with the larger molecule in nature. Thus, when the heterologous region encodes a mammalian gene, the gene will usually be flanked by DNA that does not flank the mammalian genomic DNA in the genome of the source organism. Another example of a heterologous region is a construct where the coding sequence itself is not found in nature (e.g., a cDNA where the genomic coding sequence contains introns, or synthetic sequences having codons different than the native gene). Allelic variations or naturally-occurring mutational events d not give rise to a heterologous region of DNA as defined herein.

A "coding sequence" is an in-frame sequence of codons that (in view of the genetic code) correspond to or encode a protein or peptide, sequence. Two coding sequences correspond to each other if the sequences or their complementary sequences encode the same amino acid sequences. A coding sequence in association with appropriate regulatory sequences may be transcribed and translated into a polypeptide. A polyadenylation signal and transcription termination sequence will usually be located 3' to the coding sequence. A "promoter sequence" is a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a downstream (3' direction) coding sequence. Promoter sequences typically contain additional sites for binding of regulatory molecules (e.g., transcription factors) which affect the transcription of the coding sequence. A coding sequence is "under the control" of the promoter sequence or "operatively linked" to the promoter when RNA polymerase binds the promoter sequence in a cell and transcribes the coding sequence into mRNA, which is then in turn translated into the protein encoded by the coding sequence.

Vectors are used to introduce a foreign substance, such as DNA, RNA or protein, into an organism or host cell, Typical vectors include recombinant viruses (for polynucleotides) and liposomes or other lipid aggregates (for polypeptides and/or polynucleotides). A "DNA vector" is a replicon, such as plasmid, phage or cosmid, to which another polynucleotide segment may be attached so as to bring about the replication of the attached segment. An "expression vector" is a DNA vector which contains regulatory sequences which will direct polypeptide synthesis by an appropriate host cell. This usually means a promoter to bind RNA polymerase and initiate transcription of mRNA, as well as ribosome binding sites and initiation signals to direct translation of the mRNA into a polypeptide(s). Incorporation of a polynucleotide sequence into an expression vector at the proper site and in correct reading frame, followed by transformation of an appropriate host cell by the vector, enables the production of a polypeptide encoded by said polynucleotide sequence. Exemplary expression vectors and techniques for their use are described in the following publications: Old et al., Principles of Gene Manipulation: An Introduction to Genetic Engineering, Blackwell Scientific Publications, 4th edition, 1989; Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, 1989; Sambrook et al., Molecular Cloning: A Laboratory Manual, 3rd Edition, Cold Spring Harbor Laboratory Press, 2001; Gorman, "High Efficiency Gene Transfer into Mammalian Cells," in DNA Cloning, Volume II, Glover, D. M., Ed., IRL Press, Washington, D.C., pp. 143 190 (1985).

For example, a liposomes or other lipid aggregate may comprise a lipid such as phosphatidylcholines (lecithins) (PC), phosphatidylethanolamines (PE), lysolecithins, lysophosphatidylethanolamines, phosphatidylserines (PS), phosphatidylglycerols (PG), phosphatidylinositol (P1), sphingomyelins, cardiolipin, phosphatidic acids (PA), fatty acids, gangliosides, glucolipids, glycolipids, mono-, di or triglycerides, ceramides, cerebrosides and combinations thereof; a cationic lipid (or other cationic amphiphile) such as 1,2-diolcyloxy-3-(trimethylamino) propane (DOTAP); N-cholesteryloxycarbaryl-3,7,12-triazapentadecane-1,15-diamine (CTAP); N-[1-(2,3,-ditetradecytoxy)propyl]-N,N-dimethyl-N-hydroxyethylammonium bromide (DMRIE); N-[1-(2,3,-diolcyloxy)propyl]-N,N-dimethyl-N-hydroxy ethylammonium bromide (DORIE); N-[1-(2,3-diolcyloxy) propyl]-N,N,N-trimethylammonium chloride (DOTMA); 3 beta [N--(N',N'-dimethylaminoethane)carbamoly] cholesterol (DC-Choi); and dimethyldioctadecylammonium (DDAB); dioleoylphosphatidyl ethanolamine (DOPE), cholesterol-containing DOPC; and combinations thereof; and/or a hydrophilic polymer such as polyvinylpyrrolidone, polyvinylmethylether, polymethyloxazoline, polyethyloxazoline, polyhydroxypropyloxazoline, polyhydroxypropylmethacrylamide, polymethacrylamide, polydimethylacrylamide, polyhydroxypropylmethacrylate, polyhydroxyethylacrylate, hydroxymethylcellulose, hydroxyethylcellulose, polyethyleneglycol, polyaspartamide and combinations thereof. Other suitable cationic lipids are described in Miller, Angew. Chem. Int. Ed. 37:1768 1785 (1998), and Cooper et al., Chem. Eur. J. 4(1): 137 151 (1998). Liposomes can be crosslinked, partially crosslinked, or free from crosslinking. Cross linked liposomes can include crosslinked as well as non-crosslinked components. Suitable cationic liposomes or cytofectins are commercially available and can also be prepared as described in Sipkins et al., Nature Medicine, 1998, 4(5):(1998), 623 626 or as described in Miller, supra. Exemplary liposomes include a polymerizable zwitterionic or neutral lipid, a polymerizable integrin targeting lipid and a polymerizable cationic lipid suitable for binding a nucleic acid. Liposomes can optionally include peptides that provide increased efficiency, for example as described in U.S. Pat. No. 7,297,759. Additional exemplary liposomes and other lipid aggregates are described in U.S. Pat. No. 7,166,298.

"Amplification" of polynucleotide sequences is the in vitro production of multiple copies of a particular nucleic acid sequence. The amplified sequence is usually in the form of DNA. A variety of techniques for carrying out such amplification are described in a review article by Van Brunt (1990, Rio/Technol., 8(4):291-294). Polymerase chain reaction or PCR is a prototype of nucleic acid amplification, and use of PCR herein should be considered exemplary of other suitable amplification techniques.

The general structure of antibodies in vertebrates now is well understood (Edelman, G. M., Ann. N.Y. Acad. Sci., 190: 5 (1971)). Antibodies consist of two identical light polypeptide chains of molecular weight approximately 23,000 daltons (the "light chain"), and two identical heavy chains of molecular weight 53,000-70,000 (the "heavy chain"). The four chains are joined by disulfide bonds in a "Y" configuration wherein the light chains bracket the heavy chains starting at the mouth of the "Y" configuration. The "branch" portion of the "Y" configuration is designated the Fab region; the stem portion of the "Y" configuration is designated the Fc region. The amino acid sequence orientation runs from the N-terminal end at the top of the "Y" configuration to the C-terminal end at the bottom of each chain. The N-terminal end possesses the variable region having specificity for the antigen that elicited it, and is approximately 100 amino acids in length, there being slight variations between light and heavy chain and from antibody to antibody.

The variable region is linked in each chain to a constant region that extends the remaining length of the chain and that within a particular class of antibody does not vary with the specificity of the antibody (i.e., the antigen eliciting it). There are five known major classes of constant regions that determine the class of the immunoglobulin molecule (IgG, IgM, IgA, IgD, and IgE corresponding to .gamma., .mu., .alpha., .delta., and .epsilon. (gamma, mu, alpha, delta, or epsilon) heavy chain constant regions). The constant region or class determines subsequent effector function of the antibody, including activation of complement (Kabat, E. A., Structural Concepts in Immunology and Immunochemistry, 2nd Ed., p. 413-436, Holt, Rinehart, Winston (1976)), and other cellular responses (Andrews, D. W., et al., Clinical Immunobiology, pp 1-18, W. B. Sanders (1980); Kohl, S., et al., Immunology, 48: 187 (1983)); while the variable region determines the antigen with which it will react. Light chains are classified as either .kappa. (kappa) or .lamda. (lambda). Each heavy chain class can be paired with either kappa or lambda light chain. The light and heavy chains are covalently bonded to each other, and the "tail" portions of the two heavy chains are bonded to each other by covalent disulfide linkages when the immunoglobulins are generated either by hybridomas or by B cells.

The expression "variable region" or "VR" refers to the domains within each pair of light and heavy chains in an antibody that are involved directly in binding the antibody to the antigen. Each heavy chain has at one end a variable domain (V.sub.H) followed by a number of constant domains. Each light chain has a variable domain (V.sub.L) at one end and a constant domain at its other end; the constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light chain variable domain is aligned with the variable domain of the heavy chain.

The expressions "complementarity determining region," "hypervariable region," or "CDR" refer to one or more of the hyper-variable or complementarity determining regions (CDRs) found in the variable regions of light or heavy chains of an antibody (See Kabat, E. A. et al., Sequences of Proteins of Immunological Interest, National Institutes of Health, Bethesda, Md., (1987)). These expressions include the hypervariable regions as defined by Kabat et al. ("Sequences of Proteins of Immunological Interest," Kabat E., et al., US Dept. of Health and Human Services, 1983) or the hypervariable loops in 3-dimensional structures of antibodies (Chothia and Lesk, J Mol. Biol. 196 901-917 (1987)). The CDRs in each chain are held in close proximity by framework regions and, with the CDRs from the other chain, contribute to the formation of the antigen binding site. Within the CDRs there are select amino acids that have been described as the selectivity determining regions (SDRs) which represent the critical contact residues used by the CDR in the antibody-antigen interaction (Kashmiri, S., Methods, 36:25-34 (2005)). CDRs for exemplary anti-IL-6 antibodies are provided herein.

The expressions "framework region" or "FR" refer to one or more of the framework regions within the variable regions of the light and heavy chains of an antibody (See Kabat, E. A. et al., Sequences of Proteins of Immunological Interest, National Institutes of Health, Bethesda, Md., (1987)). These expressions include those amino acid sequence regions interposed between the CDRs within the variable regions of the light and heavy chains of an antibody. As mentioned in the preferred embodiments, the FRs will comprise human FRs highly homologous to the parent antibody (e.g., rabbit antibody).

Ab1 Anti-IL-6 Antibodies and Binding Fragments Thereof

The invention includes antibodies having binding specificity to IL-6 and possessing a variable light chain sequence comprising the sequence set forth below:

MDTRAPTQLLGLLLLWLPGARCAYDMTQTPASVSAAVGGTVTIKCQASQSINNELSWY QQKPGQRPKLLIYRASTLASGVSSRFKGSGSGTEFTLTISDLECADAATYYCQQGYSLRN IDNAFGGGTEVVVKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNN (SEQ ID NO: 2) or AIQMTQSPSSLSASVGDRVTITCQASQSINNELSWYQQKPGKAPKLLIYRASTLASGVPS RFSGSGSGTDFTLTISSLQPDDFATYYCQQGYSLRNIDNAFGGGTKVEIKR (SEQ ID NO: 709) and humanized versions and variants thereof including those set forth in FIGS. 2 and 34-37, and those identified in Table 1.

The invention also includes antibodies having binding specificity to IL-6 and possessing a variable heavy chain sequence comprising the sequence set forth below:

METGLRWLLLVAVLKGVQCQSLEESGGRLVTPGTPLTLTCTASGFSLSNYYVTWVRQA PGKGLEWIGIIYGSDETAYATWAIGRFTISKTSTTVDLKMTSLTAADTATYFCARDDSSD WDAKFNLWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVK (SEQ ID NO: 3)

or

EVQLVESGGGLVQPGGSLRLSCAASGFSLSNYYVTWVRQAPGKGLEWVGIIYGSDETA YATSAIGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDDSSDWDAKFNLWGQGTLV TVSS (SEQ ID NO: 657) and humanized versions and variants thereof including those set forth in FIGS. 2 and 34-37, and those identified in Table 1.

The invention further includes antibodies having binding specificity to IL-6 and possessing a variable heavy chain sequence which is a modified version of SEQ ID NO: 3 wherein the tryptophan residue in CDR2 is changed to a serine as set forth below:

METGLRWLLLVAVLKGVQCQSLEESGGRLVTPGTPLTLTCTASGFSLSNYYVTWVRQA PGKGLEWIGIIYGSDETAYATSAIGRFTISKTSTTVDLKMTSLTAADTATYFCARDDSSD WDAKFNLWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVK (SEQ ID NO: 658) and humanized versions and variants thereof including those set forth in FIGS. 2 and 34-37, and those identified in Table 1.

The invention further contemplates antibodies comprising one or more of the polypeptide sequences of SEQ ID NO: 4; SEQ ID NO: 5; and SEQ ID NO: 6 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the variable light chain sequence of SEQ ID NO: 2, and/or one or more of the polypeptide sequences of SEQ ID NO: 7; SEQ ID NO: 8 or 120; and SEQ ID NO: 9 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the variable heavy chain sequence of SEQ ID NO: 3 or 19, or combinations of these polypeptide sequences. In another embodiment of the invention, the antibodies of the invention include combinations of the CDRs and the variable heavy and light chain sequences set forth above.

In another embodiment, the invention contemplates other antibodies, such as for example chimeric antibodies, comprising one or more of the polypeptide sequences of SEQ ID NO: 4; SEQ ID NO: 5; and SEQ ID NO: 6 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the variable light chain sequence of SEQ ID NO: 2, and/or one OF more of the polypeptide sequences of SEQ ID NO: 7; SEQ ID NO: 8 or 120; and SEQ ID NO: 9 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the variable heavy chain sequence of SEQ ID NO: 3 or 19, or combinations of these polypeptide sequences. In another embodiment of the invention, the antibodies of the invention include combinations of the CDRs and humanized versions of the variable heavy and light chain sequences set forth above.

The invention also contemplates fragments of the antibody having binding specificity to IL-6. In one embodiment of the invention, antibody fragments of the invention comprise, or alternatively consist of, humanized versions of the polypeptide sequence of SEQ ID NO: 2, 20, 647, 651, 660, 666, 699, 702, 706, or 709. In another embodiment of the invention, antibody fragments of the invention comprise, or alternatively consist of, humanized versions of the polypeptide sequence of SEQ ID NO: 3, 18, 19, 652, 656, 657, 658, 661, 664, 665, 704, or 708.

In a further embodiment of the invention, fragments of the antibody having binding specificity to IL-6 comprise, or alternatively consist of, one or more of the polypeptide sequences of SEQ ID NO: 4; SEQ ID NO: 5; and SEQ ID NO: 6 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the variable light chain sequence of SEQ ID NO: 2 or SEQ ID NO: 709.

In a further embodiment of the invention, fragments of the antibody having binding specificity to IL-6 comprise, or alternatively consist of, one or more of the polypeptide sequences of SEQ ID NO: 7; SEQ ID NO: 8 or SEQ ID NO: 120; and SEQ ID NO: 9 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the variable heavy chain sequence of SEQ ID NO: 3 and 657 or 19.

The invention also contemplates antibody fragments which include one or more of the antibody fragments described herein. In one embodiment of the invention, fragments of the antibodies having binding specificity to IL-6 comprise, or alternatively consist of, one, two, three or more, including all of the following antibody fragments: the variable light chain region of SEQ ID NO: 2; the variable heavy chain region of SEQ ID NO: 3; the complementarity-determining regions (SEQ ID NO: 4; SEQ ID NO: 5; and SEQ ID NO: 6) of the variable light chain region of SEQ ID NO: 2; and the complementarity-determining regions (SEQ ID NO: 7; SEQ ID NO: 8 or SEQ ID NO: 120; and SEQ ID NO: 9) of the variable heavy chain region of SEQ ID NO: 3 and 657 or 19.

The invention also contemplates variants wherein either of the heavy chain polypeptide sequences of SEQ ID NO: 18 or SEQ ID NO: 19 is substituted for the heavy chain polypeptide sequence of SEQ ID NO: 3 or 657; the light chain polypeptide sequence of SEQ ID NO: 20 is substituted for the light chain polypeptide sequence of SEQ ID NO: 2 or SEQ ID NO: 709; and the heavy chain CDR sequence of SEQ ID NO: 120 is substituted for the heavy chain CDR sequence of SEQ ID NO: 8.

In a preferred embodiment of the invention, the anti-IL-6 antibody is Ab1, comprising SEQ ID NO: 2 and SEQ ID NO: 3, or more particularly an antibody comprising SEQ ID NO: 657 and SEQ ID NO: 709 (which are respectively encoded by the nucleic acid sequences in SEQ ID NO: 700 and SEQ ID NO: 723) or one comprised of the alternative SEQ ID NOs set forth in the preceding paragraph, and having at least one of the biological activities set forth herein. In a preferred embodiment the anti-IL-6 antibody will comprise a humanized sequence as shown in FIGS. 34-37.

Sequences of anti-IL-6 antibodies of the present invention are shown in Table 2. Exemplary sequence variants other alternative forms of the heavy and light chains of Ab1 through Ab7 are shown. The antibodies of the present invention encompass additional sequence variants, including conservative substitutions, substitution of one or more CDR sequences and/or FR sequences, etc.

Exemplary Ab1 embodiments include an antibody comprising a variant of the light chain and/or heavy chain. Exemplary variants of the light chain of Ab1 include the sequence of any of the Ab1 light chains shown (i.e., any of SEQ ID NO: 2, 20, 647, 651, 660, 666, 699, 702, 706, or 709) wherein the entire CDR1 sequence is replaced or wherein one or more residues in the CDR1 sequence is substituted by the residue in the corresponding position of any of the other light chain CDR1 sequences set forth (i.e., any of SEQ ID NO: 23, 39, 55, 71, 87, 103, 124, 140, 156, 172, 188, 204, 220, 236, 252, 268, 284, 300, 316, 332, 348, 364, 380, 396, 112, 428, 444. 460, 476, 492, 508, 524, 540, 556, or 572); and/or wherein the entire CDR2 sequence is replaced or wherein one or more residues in the CDR2 sequence is substituted by the residue in the corresponding position of any of the other light chain CDR2 sequences set forth (i.e., any of SEQ ID NO: 24, 40, 56, 72, 88, 104, 125, 141, 157, 173, 189, 205, 221, 237.253, 269, 285, 301, 317, 333, 349, 365, 381, 397, 413, 429, 445, 461, 477, 493, 509, 525, 541, 557, or 573); and/or wherein the entire CDR3 sequence is replaced or wherein one or more residues in the CDR3 sequence is substituted by the residue in the corresponding position of any of the other light chain CDR3 sequences set forth (i.e., any of SEQ ID NO: 25, 41, 57, 73, 89, 105, 126, 142, 158, 174, 190, 206, 222, 238, 254, 270, 286, 302, 318, 334, 350, 366, 382, 398, 414, 430, 446, 462, 478, 494, 510, 526, 542, 558, or 574).

Exemplary variants of the heavy chain of Ab1 include the sequence of any of the Ab1 heavy chains shown (i.e., any of SEQ ID NO: 3, 18, 19, 652, 656, 657, 658, 661, 664, 665, 704, or 708) wherein the entire CDR1 sequence is replaced or wherein one or more residues in the CDR1 sequence is substituted by the residue in the corresponding position of any of the other heavy chain CDR1 sequences set forth (i.e., any of SEQ ID NO: 26, 42, 58, 74, 90, 106, 127, 143, 159, 175, 191, 207, 223, 239, 255, 271, 287, 303, 319, 335, 351, 367, 383, 399, 415, 431, 447, 463, 479, 495, 511, 527, 543, 559, or 575); and/or wherein the entire CDR2 sequence is replaced or wherein one or more residues in the CDR2 sequence is substituted by the residue in the corresponding position of an Ab1 heavy chain CDR2, such as those set forth in Table 1 (i.e., any of SEQ ID NO: 8, or 120) or any of the other heavy chain CDR2 sequences set forth (i.e., any of SEQ ID NO: 27, 43, 59, 75, 91, 107, 121, 128, 144, 160, 176, 192, 208, 224, 240, 256, 272, 288, 304, 320, 336, 352, 368, 384, 400, 416, 432, 448, 464, 480, 496, 512, 528, 544, 560, or 576); and/or wherein the entire CDR3 sequence is replaced or wherein one or more residues in the CDR3 sequence is substituted by the residue in the corresponding position of any of the other heavy chain CDR3 sequences set forth (i.e., any of SEQ ID NO: 28, 44, 60, 76, 92, 108, 129, 145, 161, 177, 193, 209, 225, 241, 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 417, 433, 449, 465, 481, 497, 513, 529, 545, 561, or 577).

In another embodiment, the invention contemplates other antibodies, such as for example chimeric or humanized antibodies, comprising one or more of the polypeptide sequences of SEQ ID NO: 4; SEQ ID NO: 5; and SEQ ID NO: 6 which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the variable light chain sequence of SEQ ID NO: 2, and/or one or more of the polypeptide sequences of SEQ ID NO: 7 (CDR1); SEQ ID NO: 8 (CDR2); SEQ ID NO: 120 (CDR2); and SEQ ID NO: 9 (CDR3) which correspond to the complementarity-determining regions (CDRs, or hypervariable regions) of the variable heavy chain sequence of SEQ ID NO: 3 or SEQ ID NO: 19, or combinations of these polypeptide sequences. In another embodiment of the invention, the antibodies of the invention include combinations of the CDRs and the variable heavy and light chain sequences set forth above including those set forth in FIGS. 2 and 34-37, and those identified in Table 1.

In another embodiment the anti-IL-6 antibody of the invention is one comprising at least one of the following: a CDR1 light chain encoded by the sequence in SEQ ID NO: 12 or SEQ ID NO: 694; a light chain CDR2 encoded by the sequence in SEQ ID NO: 13; a light chain CDR3 encoded by the sequence in SEQ ID NO: 14 or SEQ ID NO: 695; a heavy chain CDR1 encoded by the sequence in SEQ ID NO: 15, a heavy chain CDR2 encoded by SEQ ID NO: 16 or SEQ ID NO: 696 and a heavy chain CDR3 encoded by SEQ ID NO: 17 or SEQ ID NO: 697. In addition the invention embraces such nucleic acid sequences and variants thereof.

In another embodiment the invention is directed to amino acid sequences corresponding to the CDRs of said anti-IL-6 antibody which are selected from SEQ ID NO: 4 (CDR1), SEQ ID NO: 5 (CDR2), SEQ ID NO: 6 (CDR3) SEQ ID NO: 7, SEQ ID NO: 120 and SEQ ID NO: 9.

In another embodiment the anti-IL-6 antibody of the invention comprises a light chain nucleic acid sequence of SEQ ID NO: 10, 662, 698, 701, 705, 720, 721, 722, or 723; and/or a heavy chain nucleic acid sequence of SEQ ID NO: 11, 663, 700, 703, 707, 724, or 725. In addition the invention is directed to the corresponding polypeptides encoded by any of the foregoing nucleic acid sequences and combinations thereof.

In a specific embodiment of the invention the anti-IL-6 antibodies or a portion thereof will be encoded by a nucleic acid sequence selected from those comprised in SEQ ED NO: 10, 12, 13, 14, 662, 694, 695, 698, 701, 705, 720, 721, 722, 723, 11, 15, 16, 17, 663, 696, 697, 700, 703, 707, 724, and 725. For example the CDR1 in the light chain may be encoded by SEQ ID NO: 12 or 694, the CDR2 in the light chain may be encoded by SEQ ID NO: 13, the CDR3 in the light chain may be encoded by SEQ ID NO: 14 or 695; the CDR in the heavy chain may be encoded by SEQ ID NO: 15, the CDR2 in the heavy chain may be encoded by SEQ ID NO: 16 or 696, the CDR3 in the heavy chain may be encoded by SEQ ID NO: 17 or 697. As discussed infra antibodies containing these CDRs may be constructed using appropriate human frameworks based on the humanization methods disclosed herein.

In another specific embodiment of the invention the variable light chain will be encoded by SEQ ID NO: 10, 662, 698, 701, 705, 720, 721, 722, or 723 and the variable heavy chain of the anti-IL-6 antibodies will be encoded by SEQ ID NO: 11, 663, 700, 703, 707, 724, or 725.

In a more specific embodiment variable light and heavy chains of the anti-IL-6 antibody respectively will be encoded by SEQ ID NO: 10 and 11, or SEQ ID NO: 698 and SEQ ID NO: 700, or SEQ ID NO: 701 and SEQ ID NO: 703 or SEQ ID NO: 705 and SEQ ID NO: 707.

In another specific embodiment the invention covers nucleic acid constructs containing any of the foregoing nucleic acid sequences and combinations thereof as well as recombinant cells containing these nucleic acid sequences and constructs containing wherein these nucleic acid sequences or constructs may be extrachromosomal or integrated into the host cell genome

In another specific embodiment the invention covers polypeptides containing any of the CDRs or combinations thereof recited in SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 120, SEQ ID NO: 9 or polypeptides comprising any of the variable light polypeptides comprised in SEQ ID NO: 2, 20, 647, 651, 660, 666, 699, 702, 706, or 709 and/or the variable heavy polypeptides comprised in SEQ ID NO: 3, 18, 19, 652, 656, 657, 658, 661, 664, 665, 704, or 708. These polypeptides optionally may be attached directly or indirectly to other immunoglobulin polypeptides or effector moieties such as therapeutic or detectable entities.

In another embodiment the anti-IL-6 antibody is one comprising at least one of the following: a variable light chain encoded by the sequence in SEQ ID NO: 10 or SEQ ID NO: 698 or SEQ ID NO: 701 or SEQ ID NO: 705 and a variable chain encoded by the sequence in SEQ ID NO: 11 or SEQ ID NO: 700 or SEQ JD NO: 703 or SEQ ID NO: 707.

In another embodiment the anti-IL-6 antibody is a variant of the foregoing sequences that includes one or more substitution in the framework and/or CDR sequences and which has one or more of the properties of Ab1 in vitro and/or upon in vivo administration.

These in vitro and in vivo properties are described in more detail in the examples below and include: competing with Ab1 for binding to IL-6 and/or peptides thereof; having a binding affinity (Kd) for IL-6 of less than about 50 picomolar, and/or a rate of dissociation (K.sub.off) from IL-6 of less than or equal to 10.sup.4 S.sup.1; having an in-vivo half-life of at least about 22 days in a healthy human subject; ability to prevent or treat hypoalbunemia; ability to prevent or treat elevated CRP; ability to prevent or treat abnormal coagulation; and/or ability to decrease the risk of thrombosis in an individual having a disease or condition associated with increased risk of thrombosis. Additional non-limiting examples of anti-IL-6 activity are set forth herein, for example, under the heading "Anti-IL-6 Activity."

In another embodiment the anti-IL-6 antibody includes one or more of the Ab1 light-chain and/or heavy chain CDR sequences (see Table 1) or variant(s) thereof which has one or more of the properties of Ab1 in vitro and/or upon in vivo administration (examples of such properties are discussed in the preceding paragraph). One of skill in the art would understand how to combine these CDR sequences to form an antigen-binding surface, e.g. by linkage to one or more scaffold which may comprise human or other mammalian framework sequences, or their functional orthologs derived from a SMIP, camelbody, nanobody, IgNAR or other immunoglobulin or other engineered antibody. For example, embodiments may specifically hind to human IL-6 and include one, two, three, four, five, six, or more of the following CDR sequences or variants thereof: a polypeptide having at least 72.7% (i.e., 8 out of 11 amino acids) identity to the light chain CDR1 of SEQ ID NO: 4; a polypeptide having at least 81.8% (i.e., 9 out of 11 amino acids) identity to the light chain CDR1 of SEQ ID NO: 4; a polypeptide having at least 90.9% (i.e., 10 out of 11 amino acids) identity to the light chain CDR1 of SEQ ID NO: 4; a polypeptide having 100% (i.e., 11 out of 11 amino acids) identity to the light chain CDR1 of SEQ ID NO: 4; a polypeptide having at least 85.7% (i.e., 6 out of 7 amino acids) identity to the light chain CDR2 of SEQ ID NO: 5; a polypeptide having 100% (i.e., 7 out of 7 amino acids) identity to the light chain CDR2 of SEQ ID NO: 5; a polypeptide having at least 50% (i.e., 6 out of 12 amino acids) identity to the light chain CDR3 of SEQ ID NO: 6; a polypeptide having at least 58.3% (i.e., 7 out of 12 amino acids) identity to the light chain CDR3 of SEQ ID NO: 6; a polypeptide having at least 66.6% (i.e., 8 Out of 12 amino acids) identity to the Eight chain CDR3 of SEQ ID NO: 6; a polypeptide having at least 75% (i.e., 9 out of 12 amino acids) identity to the light chain CDR3 of SEQ ID NO: 6; a polypeptide having at least 83.3% (i.e., 10 out of 12 amino acids) identity to the light chain CDR3 of SEQ ID NO: 6; a polypeptide having at least 91.6% (i.e., 11 out of 12 amino acids) identity to the light chain CDR3 of SEQ ID NO: 6; a polypeptide having 100% (i.e., 12 out of 12 amino acids) identity to the light chain CDR3 of SEQ ID NO: 6; a polypeptide having at least 80% (i.e., 4 out of 5 amino acids) identity to the heavy chain CDR1 of SEQ ID NO: 7; a polypeptide having 100% (i.e., 5 out of 5 amino acids) identity to the heavy chain CDR1 of SEQ ID NO: 7; a polypeptide having at least 50% (i.e., 8 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120; a polypeptide having at least 56.2% (i.e., 9 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120; a polypeptide having at least 62.5% (i.e., 10 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120; a polypeptide having at least 68.7% (i.e., 11 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120; a polypeptide having at least 75% (i.e., 12 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120; a polypeptide having at least 81.2% (i.e., 13 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120; a polypeptide having at least 87.5% (i.e., 14 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120; a polypeptide having at least 93.7% (i.e., 15 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120; a polypeptide having 100% (i.e., 16 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120; a polypeptide having at least 33.3% (i.e., 4 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9; a polypeptide having at least 41.6% (i.e., 5 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9; a polypeptide having at least 50% (i.e., 6 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9; a polypeptide having at least 58.3% (i.e., 7 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9; a polypeptide having at least 66.6% (i.e., 8 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9; a polypeptide having at least 75% (i.e., 9 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9; a polypeptide having at least 83.3% (i.e., 10 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9; a polypeptide having at least 91.6% (i.e., 11 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9; a polypeptide having 100% (i.e., 12 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9; a polypeptide having at least 90.9% (i.e., 10 out of 11 amino acids) similarity to the light chain CDR1 of SEQ ID NO: 4; a polypeptide having 100% (i.e., 11 out of 11 amino acids) similarity to the light chain CDR1 of SEQ ID NO: 4; a polypeptide having at least 85.7% (i.e., 6 out of 7 amino acids) similarity to the light chain CDR2 of SEQ ID NO: 5; a polypeptide having 100% (i.e., 7 out of 7 amino acids) similarity to the light chain CDR2 of SEQ ID NO: 5; a polypeptide having at least 66.6% (i.e., 8 out of 12 amino acids) similarity to the light chain CDR3 of SEQ ID NO: 6; a polypeptide having at least 75% (i.e., 9 out of 12 amino acids) similarity to the light chain CDR3 of SEQ ID NO: 6; a polypeptide having at least 83.3% (i.e., I0 out of 12 amino acids) similarity to the Eight chain CDR3 of SEQ ID NO: 6; a polypeptide having at least 91.6% (i.e., 11 out of 12 amino acids) similarity to the light chain CDR3 of SEQ ID NO: 6; a polypeptide having 100% (i.e., 12 out of 12 amino acids) similarity to the light chain CDR3 of SEQ ID NO: 6; a polypeptide having at least 80% (i.e., 4 out of 5 amino acids) similarity to the heavy chain CDR1 of SEQ ID NO: 7; a polypeptide having 100% (i.e., 5 out of 5 amino acids) similarity to the heavy chain CDR1 of SEQ ID NO: 7; a polypeptide having at least 56.2% (i.e., 9 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120; a polypeptide having at least 62.5% (i.e., 10 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120; a polypeptide having at least 68.7% (i.e., 11 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120; a polypeptide having at least 75% (i.e., 12 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120; a polypeptide having at least 81.2% (i.e., 13 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120; a polypeptide having at least 87.5% (i.e., 14 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120; a polypeptide having at least 93.7% (i.e., 15 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120; a polypeptide having 100% (i.e., 16 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120; a polypeptide having at least 50% (i.e., 6 out of 12 amino acids) similarity to the heavy chain CDR3 of SEQ ID NO: 9; a polypeptide having at least 58.3% (i.e., 7 out of 12 amino acids) similarity to the heavy chain CDR3 of SEQ ID NO: 9; a polypeptide having at least 66.6% (i.e., 8 out of 12 amino acids) similarity to the heavy chain CDR3 of SEQ ID NO: 9; a polypeptide having at least 75% (i.e., 9 out of 12 amino acids) similarity to the heavy chain CDR3 of SEQ ID NO: 9; a polypeptide having at least 83.3% (i.e., 10 out of 12 amino acids) similarity to the heavy chain CDR3 of SEQ ID NO: 9; a polypeptide having at least 91.6% (i.e., 11 out of 12 amino acids) similarity to the heavy chain CDR3 of SEQ ID NO: 9; a polypeptide having 100% (i.e., 12 out of 12 amino acids) similarity to the heavy chain CDR3 of SEQ ID NO: 9.

Other exemplary embodiments include one or more polynucleotides encoding any of the foregoing, e.g., a polynucleotide encoding a polypeptide that specifically binds to human IL-6 and includes one, two, three, four, five, six, or more of the following CDRs or variants thereof: a polynucleotide encoding a polypeptide having at least 72.7% (i.e., 8 out of 11 amino acids) identity to the light chain CDR1 of SEQ ID NO: 4; a polynucleotide encoding a polypeptide having at least 81.8% (i.e., 9 out of 11 amino acids) identity to the light chain CDR1 of SEQ ID NO: 4; a polynucleotide encoding a polypeptide having at least 90.9% (i.e., 10 out of 11 amino acids) identity to the light chain CDR1 of SEQ ID NO: 4; a polynucleotide encoding a polypeptide having 100% (i.e., 11 out of 11 amino acids) identity to the light chain CDR1 of SEQ ID NO: 4; a polynucleotide encoding a polypeptide having at least 85.7% (i.e., 6 out of 7 amino acids) identity to the light chain CDR2 of SEQ ID NO: 5; a polynucleotide encoding a polypeptide having 100% (i.e., 7 out of 7 amino acids) identity to the light chain CDR2 of SEQ ID NO: 5; a polynucleotide encoding a polypeptide having at least 50% (i.e., 6 out of 12 amino acids) identity to the light chain CDR3 of SEQ ID NO: 6; a polynucleotide encoding a polypeptide having at least 58.3% (i.e., 7 out of 12 amino acids) identity to the light chain CDR3 of SEQ ID NO: 6; a polynucleotide encoding a polypeptide having at least 66.6% 8 out of 12 amino acids) identity to the light chain CDR3 of SEQ ID NO: 6; a polynucleotide encoding a polypeptide having at least 75% (i.e., 9 out of 12 amino acids) identity to the light chain CDR3 of SEQ ID NO: 6; a polynucleotide encoding a polypeptide having at least 83.3% (i.e., 10 out of 12 amino acids) identity to the light chain CDR3 of SEQ ID NO: 6; a polynucleotide encoding a polypeptide having at least 91.6% (i.e., 11 out of 12 amino acids) identity to the light chain CDR3 of SEQ ID NO: 6; a polynucleotide encoding a polypeptide having 100% (i.e., 12 out of 12 amino acids) identity to the light chain CDR3 of SEQ ID NO: 6; a polynucleotide encoding a polypeptide having at least 80% (i.e., 4 out of 5 amino acids) identity to the heavy chain CDR1 of SEQ ID NO: 7; a polynucleotide encoding a polypeptide having 100% (i.e., 5 out of S amino acids) identity to the heavy chain CDR1 of SEQ ID NO: 7; a polynucleotide encoding a polypeptide having at least 50% (i.e., 8 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120; a polynucleotide encoding a polypeptide having at least 56.2% (i.e., 9 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120; a polynucleotide encoding a polypeptide having at least 62.5% (i.e., 10 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120; a polynucleotide encoding a polypeptide having at least 68.7% (i.e., 11 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120; a polynucleotide encoding a polypeptide having at least 75% (i.e., 12 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120; a polynucleotide encoding a polypeptide having at least 81.2% (i.e., 13 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120; a polynucleotide encoding a polypeptide having at least 87.5% (i.e., 14 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120; a polynucleotide encoding a polypeptide having at least 93.7% (i.e., 15 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120; a polynucleotide encoding a polypeptide having 100% (i.e., 16 out of 16 amino acids) identity to the heavy chain CDR2 of SEQ ID NO: 120; a polynucleotide encoding a polypeptide having at least 33.3% (i.e., 4 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9; a polynucleotide encoding a polypeptide having at least 41.6% (i.e., 5 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9; a polynucleotide encoding a polypeptide having at least 50% (i.e., 6 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9; a polynucleotide encoding a polypeptide having at least 58.3% (i.e., 7 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9; a polynucleotide encoding a polypeptide having at least 66.6% (i.e., 8 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9; a polynucleotide encoding a polypeptide having at least 75% (i.e., 9 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9; a polynucleotide encoding a polypeptide having at least 83.3% (i.e., 10 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9; a polynucleotide encoding a polypeptide having at least 91.6% (i.e., 11 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9; a polynucleotide encoding a polypeptide having 100% (i.e., 12 out of 12 amino acids) identity to the heavy chain CDR3 of SEQ ID NO: 9; a polynucleotide encoding a polypeptide having at least 90.9% (i.e., 10 out of 11 amino acids) similarity to the light chain CDR1 of SEQ ID NO: 4; a polynucleotide encoding a polypeptide having 100% (i.e., 11 out of 11 amino acids) similarity to the light chain CDR1 of SEQ ID NO: 4; a polynucleotide encoding a polypeptide having at least 85.7% (i.e., 6 out of 7 amino acids) similarity to the light chain CDR2 of SEQ ID NO: 5; a polynucleotide encoding a polypeptide having 100% (i.e., 7 out of 7 amino acids) similarity to the light chain CDR2 of SEQ ID NO: 5; a polynucleotide encoding a polypeptide having at least 66.6% (i.e., 8 out of 12 amino acids) similarity to the light chain CDR3 of SEQ ID NO: 6; a polynucleotide encoding a polypeptide having at least 75% (i.e., 9 out of 12 amino acids) similarity to the tight chain CDR3 of SEQ ID NO: 6; a polynucleotide encoding a polypeptide having at least 83.3% (i.e., 10 out of 12 amino acids) similarity to the light chain CDR3 of SEQ ID NO: 6; a polynucleotide encoding a polypeptide having at least 91.6% (i.e., 11 out of 12 amino acids) similarity to the light chain CDR3 of SEQ ID NO: 6; a polynucleotide encoding a polypeptide having 100% (i.e., 12 out of 12 amino acids) similarity to the light chain CDR3 of SEQ ID NO: 6; a polynucleotide encoding a polypeptide having at least 80% (i.e., 4 out of 5 amino acids) similarity to the heavy chain CDR1 of SEQ ID NO: 7; a polynucleotide encoding a polypeptide having 100% (i.e., 5 out of 5 amino acids) similarity to the heavy chain CDR1 of SEQ ID NO: 7; a polynucleotide encoding a polypeptide having at least 56.2% (i.e., 9 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120; a polynucleotide encoding a polypeptide having at least 62.5% (i.e., 10 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120; a polynucleotide encoding a polypeptide having at least 68.7% (i.e., 11 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120; a polynucleotide encoding a polypeptide having at least 75% (i.e., 12 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120; a polynucleotide encoding a polypeptide having at least 81.2% (i.e., 13 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120; a polynucleotide encoding a polypeptide having at least 87.5% (i.e., 14 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120; a polynucleotide encoding a polypeptide having at least 93.7% (i.e., 15 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120; a polynucleotide encoding a polypeptide having 100% (i.e., 16 out of 16 amino acids) similarity to the heavy chain CDR2 of SEQ ID NO: 120; a polynucleotide encoding a polypeptide having at least 50% (i.e., 6 out of 12 amino acids) similarity to the heavy chain CDR3 of SEQ ID NO: 9; a polynucleotide encoding a polypeptide having at least 58.3% (i.e., 7 out of 12 amino acids) similarity to the heavy chain CDR3 of SEQ ID NO: 9; a polynucleotide encoding a polypeptide having at least 66.6% (i.e., 8 out of 12 amino acids) similarity to the heavy chain CDR3 of SEQ ID NO: 9; a polynucleotide encoding a polypeptide having at least 75% (i.e., 9 out of 12 amino acids) similarity to the heavy chain CDR3 of SEQ ID NO: 9; a polynucleotide encoding a polypeptide having at least 83.3% (i.e., 10 out of 12 amino acids) similarity to the heavy chain CDR3 of SEQ ID NO: 9; a polynucleotide encoding a polypeptide having at least 91.6% (i.e., 11 out of 12 amino acids) similarity to the heavy chain CDR3 of SEQ ID NO: 9; a polynucleotide encoding a polypeptide having 100% (i.e., 12 out of 12 amino acids) similarity to the heavy chain CDR3 of SEQ ID NO: 9.

TABLE-US-00003 TABLE 2 Sequences of exemplary anti-IL-6 antibodies. Antibody chains CDR1 CDR2 CDR3 Antibody PRT. Nuc. PRT. Nuc. PRT. Nuc. PRT. Nuc. Ab1 light chains* 2 10 4 12 5 13 6 14 20 720 4 12 5 13 6 14 647 721 4 12 5 13 6 14 651 4 12 5 13 6 14 660 662 4 12 5 13 6 14 666 722 4 12 5 13 6 14 699 698 4 694 5 13 6 695 702 701 4 694 5 13 6 695 706 705 4 694 5 13 6 695 709 723 4 12 5 13 6 14 Human light 648 710 713 chains used in 649 711 714 Ab1 humanization 650 712 715 Ab1 heavy chains 3 11 7 15 8 16 9 17 18 7 15 8 16 9 17 19 724 7 15 120 696 9 17 652 725 7 15 8 16 9 17 656 7 15 8 16 9 17 657 700 7 15 659 696 9 697 658 7 15 120 696 9 17 661 663 7 15 8 16 9 17 664 7 15 8 16 9 17 665 7 15 120 696 9 17 704 703 7 15 120 696 9 697 708 707 7 15 120 696 9 697 Human heavy 653 716 717 chains used in 654 716 717 Ab1 humanization 655 74 82 718 Ab2 light chains 21 29 23 31 24 32 25 33 667 669 23 31 24 32 25 33 Ab2 heavy chains 22 30 26 34 27 35 28 36 668 670 26 34 27 35 28 36 Ab3 light chains 37 45 39 47 40 48 41 49 671 673 39 47 40 48 41 49 Ab3 heavy chains 38 46 42 50 43 51 44 52 672 674 42 50 43 51 44 52 Ab4 light chains 53 61 55 63 56 64 57 65 675 677 55 63 56 64 57 65 Ab4 heavy chains 54 62 58 66 59 67 60 68 676 678 58 66 59 67 60 68 Ab5 light chains 69 77 71 79 72 80 73 81 679 681 71 79 72 80 73 81 Ab5 heavy chains 70 78 74 82 75 83 76 84 680 682 74 82 75 83 76 84 Ab6 light chains 85 93 87 95 88 96 89 97 683 685 87 95 88 96 89 97 Ab6 heavy chains 86 94 90 98 91 99 92 100 684 686 90 98 91 99 92 100 Ab7 light chains 101 109 103 111 104 112 105 113 119 103 111 104 112 105 113 687 689 103 111 104 112 105 113 693 103 111 104 112 105 113 Ab7 heavy chains 102 110 106 114 107 115 108 116 117 106 114 107 115 108 116 118 106 114 121 108 116 688 690 106 114 107 115 108 116 691 106 114 107 115 108 116 692 106 114 121 108 116 Ab8 light chain 122 130 124 132 125 133 126 134 Ab8 heavy chain 123 131 127 135 128 136 129 137 Ab9 light chain 138 146 140 148 141 149 142 150 Ab9 heavy chain 139 147 143 151 144 152 145 153 Ab10 light chain 154 162 156 164 157 165 158 166 Ab10 heavy chain 155 163 159 167 160 168 161 169 Ab11 light chain 170 178 172 180 173 181 174 182 Ab11 heavy chain 171 179 175 183 176 184 177 185 Ab12 light chain 186 194 188 196 189 197 190 198 Ab12 heavy chain 187 195 191 199 192 200 193 201 Ab13 light chain 202 210 204 212 205 213 206 214 Ab13 heavy chain 203 211 207 215 208 216 209 217 Ab14 light chain 218 226 220 228 221 229 222 230 Ab14 heavy chain 219 227 223 231 224 232 225 233 Ab15 light chain 234 242 236 244 237 245 238 246 Ab15 heavy chain 235 243 239 247 240 248 241 249 Ab16 light chain 250 258 252 260 253 261 254 262 Ab16 heavy chain 251 259 255 263 256 264 257 265 Ab17 light chain 266 274 268 276 269 277 270 278 Ab17 heavy chain 267 275 271 279 272 280 273 281 Ab18 light chain 282 290 284 292 285 293 286 294 Ab18 heavy chain 283 291 287 295 288 296 289 297 Ab19 light chain 298 306 300 308 301 309 302 310 Ab19 heavy chain 299 307 303 311 304 312 305 313 Ab20 light chain 314 322 316 324 317 325 318 326 Ab20 heavy chain 315 323 319 327 320 328 321 329 Ab21 light chain 330 338 332 340 333 341 334 342 Ab21 heavy chain 331 339 335 343 336 344 337 345 Ab22 light chain 346 354 348 356 349 357 350 358 Ab22 heavy chain 347 355 351 359 352 360 353 361 Ab23 light chain 362 370 364 372 365 373 366 374 Ab23 heavy chain 363 371 367 375 368 376 369 377 Ab24 light chain 378 386 380 388 381 389 382 390 Ab24 heavy chain 379 387 383 391 384 392 385 393 Ab25 light chain 394 402 396 404 397 405 398 406 Ab25 heavy chain 395 403 399 407 400 408 401 409 Ab26 light chain 410 418 412 420 413 421 414 422 Ab26 heavy chain 411 419 415 423 416 424 417 425 Ab27 light chain 426 434 428 436 429 437 430 438 Ab27 heavy chain 427 435 431 439 432 440 433 441 Ab28 light chain 442 450 444 452 445 453 446 454 Ab28 heavy chain 443 451 447 455 448 456 449 457 Ab29 light chain 458 466 460 468 461 469 462 470 Ab29 heavy chain 459 467 463 471 464 472 465 473 Ab30 light chain 474 482 476 484 477 485 478 486 Ab30 heavy chain 475 483 479 487 480 488 481 489 Ab31 light chain 490 498 492 500 493 501 494 502 Ab31 heavy chain 491 499 495 503 496 504 497 505 Ab32 light chain 506 514 508 516 509 517 510 518 Ab32 heavy chain 507 515 511 519 512 520 513 521 Ab33 light chain 522 530 524 532 525 533 526 534 Ab33 heavy chain 523 531 527 535 528 536 529 537 Ab34 light chain 538 546 540 548 541 549 542 550 Ab34 heavy chain 539 547 543 551 544 552 545 553 Ab35 light chain 554 562 556 564 557 565 558 566 Ab35 heavy chain 555 563 559 567 560 568 561 569 Ab36 light chain 570 578 572 580 573 581 574 582 Ab36 heavy chain 571 579 575 583 576 584 577 585 *Exemplary sequence variant forms of heavy and light chains are shown on separate lines. PRT.: Polypeptide sequence. Nuc.: Exemplary coding sequence.

For reference, sequence identifiers other than those included in Table 2 are summarized in Table 3.

TABLE-US-00004 TABLE 3 Summary of sequence identifiers in this application. SEQ ID Description 1 Human IL-6 586 kappa constant light chain polypeptide sequence 587 kappa constant light chain polynucleotide sequence 588 gamma-1 constant heavy chain polypeptide sequence 589 gamma-1 constant heavy chain polynucleotide sequence 590-646 Human IL-6 peptides (see FIG. 12 and Example 14) 719 gamma-1 constant heavy chain polypeptide sequence (differs from SEQ ID NO: 518 at two positions) 726 C-reactive protein polypeptide sequence 727 IL-6 receptor alpha 728 IL-6 receptor beta/gp130

Such antibody fragments or variants thereof may be present in one or more of the following non-limiting forms: Fab, Fab', F(ab').sub.2, Fv and single chain Fv antibody forms. In a preferred embodiment, the anti-IL-6 antibodies described herein further comprises the kappa constant light chain sequence comprising the sequence set forth below:

TABLE-US-00005 (SEQ ID NO: 586) VAAPSVFIFPRSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQS GNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSS PVTKSFNRGEC.

In another preferred embodiment, the anti-IL-6 antibodies described herein further comprises the gamma-1 constant heavy chain polypeptide sequence comprising one of the sequences set forth below:

TABLE-US-00006 (SEQ ID NO: 588) ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALT SGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKV DKRVEPKSCDKTHTCPPCPAPEITGGPSVFLFPPKPKDTLMISRTPE VTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYASTYRVVSV LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP PSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD SDGSFFLYSKLTVDKSRWQQGNVESCSVMHEALHNHYTQKSLSLSPG K and (SEQ ID NO: 719) ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALT SGVHTEPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKV DKRVEPKSCDKTHTCPPCPAPELLGGPSVELFPPKPKDTLMISRTPE VTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYASTYRVVSV LTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLP PSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLD SDGSFELYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG K.

Embodiments of antibodies described herein may include a leader sequence, such as a rabbit Ig leader, albumin pre-peptide, a yeast mating factor pre pro secretion leader sequence (such as P. pastoris or Saccharomyces cerevisiae a or alpha factor), or human HAS leader. Exemplary leader sequences are shown offset from FR1 at the N-terminus of polypeptides shown in FIGS. 36A and 37A as follows: rabbit Ig leader sequences in SEQ ID NOs: 2 and 660 (MD, and SEQ ID NOs: 3 and 661 (ME . . . ); and an albumin prepeptide in SEQ ID NOs: 706 and 708, which facilitates secretion. Other leader sequences known in the art to confer desired properties, such as secretion, improved stability or half-life, etc. may also be used, either alone or in combinations with one another, on the heavy and/or light chains, which may optionally be cleaved prior to administration to a subject. For example, a polypeptide may be expressed in a cell or cell-free expression system that also expresses or includes (or is modified to express or include) a protease, e.g., a membrane-bound signal peptidase, that cleaves a leader sequence.

In another embodiment, the invention contemplates an isolated anti-IL-6 antibody comprising a V.sub.H polypeptide sequence comprising: SEQ ID NO: 3, 18, 19, 22, 38, 54, 70, 86, 102, 117, 118, 123, 139, 155, 171, 187, 203, 219, 235, 251, 267, 283, 299, 315, 331, 347, 363, 379, 395, 411, 427, 443, 459, 475, 491, 507, 523, 539, 555, 571, 652, 656, 657, 658, 661, 664, 665, 668, 672, 676, 680, 684, 688, 691, 692, 704, or 708; and further comprising a polypeptide sequence comprising: SEQ ID NO: 2, 20, 21, 37, 53, 69, 85, 101, 119, 122, 138, 154, 170, 186, 202, 218, 234, 250, 266, 282, 298, 314, 330, 346, 362, 378, 394, 410, 426, 442, 458, 474, 490, 506, 522, 538, 554, 570, 647, 651, 660, 666, 667, 671, 675, 679, 683, 687, 693, 699, 702, 706, or 709 or a variant thereof wherein one or more of the framework residues (FR residues) or CDR residues in said V.sub.H or V.sub.L polypeptide has been substituted with another amino acid residue resulting in an anti-IL-6 antibody that specifically binds IL-6. The invention contemplates humanized and chimeric forms of these antibodies wherein preferably the FR will comprise human FRs highly homologous to the parent antibody. The chimeric antibodies may include an Fc derived from IgG1, IgG2, IgG3, IgG4, IgG5, IgG6, IgG7, IgG8, IgG9, IgG10, IgG11, IgG12, IgG13, IgG14, IgG15, IgG16, IgG17, IgG18 or IgG19 constant regions and in particular a variable heavy and light chain constant region as contained in SEQ ID NO: 588 and SEQ ID NO: 586.

In one embodiment of the invention, the antibodies or V.sub.H or V.sub.L polypeptides originate or are selected from one or more rabbit B cell populations prior to initiation of the humanization process referenced herein.

In another embodiment of the invention, the anti-IL-6 antibodies and fragments and variants thereof have binding specificity for primate homologs of the human IL-6 protein. Non-limiting examples of primate homologs of the human IL-6 protein are IL-6 obtained from Macaca fascicularis (also known as the cynomolgus monkey) and the Rhesus monkey. In another embodiment of the invention, the anti-IL-6 antibodies and fragments and variants thereof inhibits the association of IL-6 with IL-6R, and/or the production of IL-6/IL-6R/gp130 complexes and/or the production of IL-6/IL-6R/gp130 multimers and/or antagonizes the biological effects of one or more of the foregoing.

As stated above, antibodies and fragments and variants thereof may be modified post-translationally to add effector moieties such as chemical linkers, detectable moieties such as for example fluorescent dyes, enzymes, substrates, bioluminescent materials, radioactive materials, and chemiluminescent moieties, or functional moieties such as for example streptavidin, avidin, biotin, a cytotoxin, a cytotoxic agent, and radioactive materials.

Regarding detectable moieties, further exemplary enzymes include, but are not limited to, horseradish peroxidase, acetylcholinesterase, alkaline phosphatase, beta-galactosidase and luciferase. Further exemplary fluorescent materials include, but are not limited to, rhodamine, fluorescein, fluorescein isothiocyanate, umbelliferone, dichlorotriazinylamine, phycoerythrin and dansyl chloride. Further exemplary chemiluminescent moieties include, but are not limited to, luminol. Further exemplary bioluminescent materials include, but are not limited to, luciferin and aequorin. Further exemplary radioactive materials include, but are not limited to, Iodine 125 (.sup.125I), Carbon 14 (.sup.14C), Sulfur 35 (.sup.35S), Tritium (.sup.3H) and Phosphorus 32 (.sup.32P).

Regarding functional moieties, exemplary cytotoxic agents include, but are not limited to, methotrexate, aminopterin, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine; alkylating agents such as mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU), mitomycin C, lomustine (CCNU), 1-methylnitrosourea, cyclothosphamide, mechlorethamine, busulfan, dibromomannitol, streptozotocin, mitomycin C, cis-dichlorodiamine platinum (11) (DDP) cisplatin and carboplatin (paraplatin); anthracyclines include daunorubicin (formerly daunomycin), doxorubicin (adriamycin), detorubicin, carminomycin, idarubicin, epirubicin, mitoxantrone and bisantrene; antibiotics include dactinomycin (actinomycin D), bleomycin, calicheamicin, mithramycin, and anthramycin (AMC); and antimytotic agents such as the vinca alkaloids, vincristine and vinblastine. Other cytotoxic agents include paclitaxel (taxol), ricin, pseudomonas exotoxin, gemcitabine, cytochalasin B, gramicidin D, ethidium bromide, emetine, etoposide, tenoposide, colchicin, dihydroxy anthracin dione, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, puromycin, procarbazine, hydroxyurea, asparaginase, corticosteroids, mytotane (O,P'-(DDD)), interferons, and mixtures of these cytotoxic agents.

Further cytotoxic agents include, but are not limited to, chemotherapeutic agents such as carboplatin, cisplatin, paclitaxel, gemcitabine, calicheamicin, doxorubicin, 5-fluorouracil, mitomycin C, actinomycin D, cyclophosphamide, vincristine, bleomycin, VEGF antagonists, EGFR antagonists, platins, taxols, irinotecan, 5-fluorouracil, gemcytabine, leucovorine, steroids, cyclophosphamide, melphalan, vinca alkaloids (e.g., vinblastine, vincristine, vindesine and vinorelbine), mustines, tyrosine kinase inhibitors, radiotherapy, sex hormone antagonists, selective androgen receptor modulators, selective estrogen receptor modulators, PDGF antagonists, TNF antagonists, IL-1 antagonists, interleukins (e.g. IL-12 or IL-2), IL-12R antagonists, Toxin conjugated monoclonal antibodies, tumor antigen specific monoclonal antibodies, Erbitux.TM., Avastin.TM., Pertuzumab, anti-CD20 antibodies, Rituxan.RTM., ocrelizumab, ofatumumab, DXL625, Herceptin.RTM., or any combination thereof. Toxic enzymes from plants and bacteria such as ricin, diphtheria toxin and Pseudomonas toxin may be conjugated to the humanized antibodies, or binding fragments thereof, to generate cell-type-specific-killing reagents (Youle, et al., Proc. Nat'l Acad. Sci. USA 77:5483 (1980); Gilliland, et al., Proc. Nat'l Acad. Sci. USA 77:4539 (1980); Krolick, et al., Proc. Nat'l Acad. Sci. USA 77:5419 (1980)).

Other cytotoxic agents include cytotoxic ribonucleases as described by Goldenberg in U.S. Pat. No. 6,653,104. Embodiments of the invention also relate to radioimmunoconjugates where a radionuclide that emits alpha or beta particles is stably coupled to the antibody, or binding fragments thereof, with or without the use of a complex-forming agent. Such radionuclides include beta-emitters such as Phosphorus-32 (.sup.31P), Scandium-47 (.sup.47Sc), Copper-67 (.sup.67Cu), Gallium-67 (.sup.67Ga), Yttrium-88 (.sup.88Y), Yttrium-90 (.sup.90Y), Iodine-125 (.sup.125I), Iodine-131 (.sup.131I), Samarium-153 (.sup.153Sm), Lutetium-177 (.sup.177Lu), Rhenium-186 (.sup.186Re) or Rhenium-188 (.sup.188Re), and alpha-emitters such as Astatine-211 (.sup.211At), Lead-212 (.sup.212Pb), Bismuth-212 (.sup.212Bi) or -213 (.sup.213Bi) or Actinium-225 (.sup.225Ac).

Methods are known in the art for conjugating an antibody or binding fragment thereof to a detectable moiety and the like, such as for example those methods described by Hunter et al, Nature 144:945 (1962); David et al, Biochemistry 13:1014 (1974); Pain et al, J. Immunol. Meth. 40:219 (1981); and Nygren, J., Histochcm. and Cytochem. 30:407 (1982).

Embodiments described herein further include variants and equivalents that are substantially homologous to the antibodies, antibody fragments, diabodies, SMIPs, camelbodies, nanobodies, IgNAR, polypeptides, variable regions and CDRs set forth herein. These may contain, e.g., conservative substitution mutations, (i.e., the substitution of one or more amino acids by similar amino acids). For example, conservative substitution refers to the substitution of an amino acid with another within the same general class, e.g., one acidic amino acid with another acidic amino acid, one basic amino acid with another basic amino acid, or one neutral amino acid by another neutral amino acid. What is intended by a conservative amino acid substitution is well known in the art.

In another embodiment, the invention contemplates polypeptide sequences having at least 90% or greater sequence homology to any one or more of the polypeptide sequences of antibody fragments, variable regions and CDRs set forth herein. More preferably, the invention contemplates polypeptide sequences having at least 95% or greater sequence homology, even more preferably at least 98% or greater sequence homology, and still more preferably at least 99% or greater sequence homology to any one or more of the polypeptide sequences of antibody fragments, variable regions and CDRs set forth herein. Methods for determining homology between nucleic acid and amino acid sequences are well known to those of ordinary skill in the art.

In another embodiment, the invention further contemplates the above-recited polypeptide homologs of the antibody fragments, variable regions and CDRs set forth herein further having anti-IL-6 activity. Non-limiting examples of anti-IL-6 activity are set forth herein, for example, under the heading "Anti-IL-6 Activity," infra.

In another embodiment, the invention further contemplates the generation and use of anti-idiotypic antibodies that bind any of the foregoing sequences. In an exemplary embodiment, such an anti-idiotypic antibody could be administered to a subject who has received an anti-IL-6 antibody to modulate, reduce, or neutralize, the effect of the anti-IL-6 antibody. Such anti-idiotypic antibodies could also be useful for treatment of an autoimmune disease characterized by the presence of anti-II-6 antibodies. A further exemplary use of such anti-idiotypic antibodies is for detection of the anti-IL-6 antibodies of the present invention, for example to monitor the levels of the anti-IL-6 antibodies present in a subject's blood or other bodily fluids.

The present invention also contemplates anti-IL-6 antibodies comprising any of the polypeptide or polynucleotide sequences described herein substituted for any of the other polynucleotide, sequences described herein. For example, without limitation thereto, the present invention contemplates antibodies comprising the combination of any of the variable light chain and variable heavy chain sequences described herein, and further contemplates antibodies resulting from substitution of any of the CDR sequences described herein for any of the other CDR sequences described herein. As noted preferred anti-IL-6 antibodies or fragments or variants thereof may contain a variable heavy and/or light sequence as shown in FIG. 34 or 35, such as SEQ ID NO: 651, 657, 709 or variants thereof wherein one or more CDR or FR residues are modified without adversely affecting antibody binding to IL-6 or other desired functional activity.

Polynucleotides Encoding Anti-IL-6 Antibody Polypeptides

The invention is further directed to polynucleotides encoding polypeptides of the antibodies having binding specificity to IL-6. In one embodiment of the invention, polynucleotides of the invention comprise, or alternatively consist of, the following polynucleotide sequence encoding the variable light chain polypeptide sequence of SEQ ID NO: 2:

TABLE-US-00007 (SEQ ID NO: 10) ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTG GCTCCCAGGTGCCAGATGTGCCTATGATATGACCCAGACTCCAGCCT CGGTGTCTGCAGCTGTGGGAGGCACAGTCACCATCAAGTGCCAGGCC AGTCAGAGCATTAACAATGAATTATCCTGGTATCAGCAGAAACCAGG GCAGCGTCCCAAGCTCCTGATCTATAGGGCATCCACTCTGGCATCTG GGGTCTCATCGCGGTTCAAAGGCAGTGGATCTGGGACAGAGTTCACT CTCACCATCAGCGACCTGGAGTGTGCCGATGCTGCCACTTACTACTG TCAACAGGGTTATAGTCTGAGGAATATTGATAATGCTTTCGGCGGAG GGACCGAGGTGGTGGTCAAACGTACGGTAGCGGCCCCATCTGTCTTC ATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGT TGTGTGCCTGCTGAATAACTT or the polynucleotide sequence of SEQ ID NO: 662, 698, 701, or 705.

In another embodiment of the invention, polynucleotides of the invention comprise, or alternatively consist of, the following polynucleotide sequence encoding the variable heavy chain polypeptide sequence of SEQ ID NO: 3:

TABLE-US-00008 (SEQ ID NO: 11) ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGG TGTCCAGTGTCAGTCGCTGGAGGAGTCCGGGGGTCGCCTGGTCACCT CCTGGGACACCCCTGACACTCACCTGCACAGCCTCTGGATTCTCCCT CAGTAACTACTACGTGACCTGGGTCCGCCAGGCTCCAGGGAAGGGGC TGGAATGGATCGGAATCATTTATGGTAGTGATGAAACGGCCTACGCG ACCTGGGCGATAGGCCGATTCACCATCTCCAAAACCTCGACCACGGT GGATCTGAAAATGACCAGTCTGACAGCCGCGGACACGGCCACCTATT TCTGTGCCAGAGATGATAGTAGTGACTGGGATGCAAAATTTAACTTG TGGGGCCAAGGCACCCTGGTCACCGTCTCGAGCGCCTCCACCAAGGG CCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGG GCACAGCGGCCCTGGGCTGCCTGGTCAAGG or the polynucleotide sequence of SEQ ID NO: 663, 700, 703, or 707.

in a further embodiment of the invention, polynucleotides encoding fragments or variants of the antibody having binding specificity to IL-6 comprise, or alternatively consist of, one or more of the polynucleotide sequences of SEQ ID NO: 12 or 694; SEQ ID NO: 13; and SEQ ID NO: 14 or 695 which correspond to polynucleotides encoding the complementarity-determining regions (CDRs, or hypervariable regions) of the light chain variable sequence of SEQ ID NO: 2.

In a further embodiment of the invention, polynucleotides encoding fragments or variants of the antibody having binding specificity to IL-6 comprise, or alternatively consist of, one or more of the polynucleotide sequences of SEQ ID NO: 15; SEQ ID NO: 16 or 696; and SEQ ID NO: 17 or 697 which correspond to polynucleotides encoding the complementarity-determining regions (CDRs, or hypervariable regions) of the heavy chain variable sequence of SEQ ID NO: 3 or SEQ ID NO: 661 or SEQ ID NO: 657 or others depicted in FIG. 34 or 35.

The invention also contemplates polynucleotide sequences including one or more of the polynucleotide sequences encoding antibody fragments or variants described herein. In one embodiment of the invention, polynucleotides encoding fragments or variants of the antibody having binding specificity to IL-6 comprise, or alternatively consist of, one, two, three or more, including all of the following polynucleotides encoding antibody fragments: the polynucleotide SEQ ID NO: 10 encoding the light chain variable region of SEQ ID NO: 2; the polynucleotide SEQ ID NO: 11 encoding the heavy chain variable region of SEQ ID NO: 3; the polynucleotide SEQ ID NO: 720 encoding the light chain polypeptide of SEQ ID NO: 20; the polynucleotide SEQ ID NO: 721 encoding the light chain polypeptide of SEQ ID NO: 647; the polynucleotide SEQ ID NO: 662 encoding the light chain polypeptide of SEQ ID NO: 660; the polynucleotide SEQ ID NO: 722 encoding the light chain polypeptide of SEQ ID NO: 666; the polynucleotide SEQ ID NO: 698 encoding the light chain polypeptide of SEQ ID NO: 699; the polynucleotide SEQ ID NO: 701 encoding the light chain polypeptide of SEQ ID NO: 702; the polynucleotide SEQ ID NO: 705 encoding the light chain polypeptide of SEQ ID NO: 706; the polynucleotide SEQ ID NO: 723 encoding the light chain polypeptide of SEQ ID NO: 709; the polynucleotide SEQ ID NO: 724 encoding the heavy chain polypeptide of SEQ ID NO: 19; the polynucleotide SEQ ID NO: 725 encoding the heavy chain polypeptide of SEQ ID NO: 652; the polynucleotide SEQ ID NO: 700 encoding the heavy chain polypeptide of SEQ ID NO: 657; the polynucleotide SEQ ID NO: 663 encoding the heavy chain polypeptide of SEQ ID NO: 661; the polynucleotide SEQ ID NO: 703 encoding the heavy chain polypeptide of SEQ ID NO: 704; the polynucleotide SEQ ID NO: 707 encoding the heavy chain polypeptide of SEQ ID NO: 708; the polynucleotides of SEQ ID NO: 12, 13, 14, 694 and 695 encoding the complementarity-determining regions of the aforementioned light chain polypeptides; and the polynucleotides of SEQ ID NO: 15, 16, 17, 696 and 697 encoding the complementarity-determining regions of the aforementioned heavy chain polypeptides, and polynucleotides encoding the variable heavy and light chain sequences in SEQ ID NO: 657 and SEQ ID NO: 709 respectively, e.g., the nucleic acid sequences in SEQ ID NO: 700 and SEQ ID NO: 723 and fragments or variants thereof, e.g., based on codon degeneracy. These nucleic acid sequences encoding variable heavy and light chain sequences may be expressed alone or in combination and these sequences preferably are fused to suitable variable constant sequences, e.g., those in SEQ ID NO: 589 and SEQ ID NO: 587.

Exemplary nucleotide sequences encoding anti-IL-6 antibodies of the present invention are identified in Table 1, above. The polynucleotide sequences shown are to be understood to be illustrative, rather than limiting. One of skill in the art can readily determine the polynucleotide sequences that would encode a given polypeptide and can readily generate coding sequences suitable for expression in a given expression system, such as by adapting the polynucleotide sequences provided and/or by generating them de novo, and can readily produce codon-optimized expression sequences, for example as described in published U.S. Patent Application no. 2008/0120732 or using other methods known in the art.

In another embodiment of the invention, polynucleotides of the invention further comprise, the following polynucleotide sequence encoding the kappa constant light chain sequence of SEQ ID NO: 586:

TABLE-US-00009 (SEQ ID NO: 587) GTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTT GAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATC CCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCG GGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCAC CTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTACGAGA AACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCG CCCGTCACAAAGAGCTTCAACAGGGGAGAGTGT.

In another embodiment of the invention, polynucleotides of the invention further comprise, the following polynucleotide sequence encoding the gamma-1 constant heavy chain polypeptide sequence of SEQ ID NO: 588:

TABLE-US-00010 (SEQ ID NO: 589) GCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAA GAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACT ACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACC AGCCTGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCT ACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACC CAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGT GGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCC CACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTC TTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGA GGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCA AGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACA AAGCCGCGGGAGGAGCAGTACGCCAGCACGTACCGTGTGGTCAGCGT CCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGT GCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATC TCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCC CCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCC TGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGC AATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGA CTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGA GCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAG GCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGG TAAA.

In one embodiment, the invention is directed to an isolated polynucleotide comprising a polynucleotide encoding an anti-IL-6 V.sub.H antibody amino acid sequence selected from SEQ ID NO: 3, 18, 19, 652, 656, 657, 658, 661, 664, 665, 704, and 708 or encoding a variant thereof wherein at least one framework residue (FR residue) has been substituted with an amino acid present at the corresponding position in a rabbit anti-IL-6 antibody V.sub.11 polypeptide or a conservative amino acid substitution. In addition, the invention specifically encompasses humanized anti-II-6 antibodies or humanized antibody binding fragments or variants thereof and nucleic acid sequences encoding the foregoing comprising the humanized variable heavy chain and/or light chain polypeptides depicted in the sequences contained in FIG. 2 or 34-37, or those identified in Table 1, or variants thereof wherein one or more framework or CDR residues may be modified. Preferably, if any modifications are introduced they will not affect adversely the binding affinity of the resulting anti-IL-6 antibody or fragment or variant thereof.

In another embodiment, the invention is directed to an isolated polynucleotide comprising the polynucleotide sequence encoding an anti-IL-6 V.sub.L antibody amino acid sequence selected from SEQ ID NO: 2, 20, 647, 651, 660, 666, 699, 702, 706, and 709 or encoding a variant thereof wherein at least one framework residue (FR residue) has been substituted with an amino acid present at the corresponding position in a rabbit anti-IL-6 antibody V.sub.L polypeptide or a conservative amino acid substitution.

In yet another embodiment, the invention is directed to one or more heterologous polynucleotides comprising a sequence encoding the polypeptides contained in SEQ ID NO: 2 and SEQ ID NO: 3; SEQ ID NO: 2 and SEQ ID NO: 18; SEQ ID NO: 2 and SEQ ID NO: 19; SEQ ID NO: 20 and SEQ ID NO: 3; SEQ ID NO: 20 and SEQ ID NO: 18; or SEQ ID NO: 20 and SEQ ID NO: 19.

In another embodiment, the invention is directed to an isolated polynucleotide that expresses a polypeptide containing at least one CDR polypeptide derived from an anti-IL-6 antibody wherein said expressed polypeptide alone specifically binds IL-6 or specifically binds IL-6 when expressed in association with another polynucleotide sequence that expresses a polypeptide containing at least one CDR polypeptide derived from an anti-IL-6 antibody wherein said at least one CDR is selected from those contained in the V.sub.L or V.sub.H polypeptides contained in SEQ ID NO: 3, 18, 19, 652, 656, 657, 658, 661, 664, 665, 704, 708, 2, 20, 647, 651, 660, 666, 699, 702, 706, or 709.

Host cells and vectors comprising said polynucleotides are also contemplated.

In another specific embodiment the invention covers nucleic acid constructs containing any of the foregoing nucleic acid sequences and combinations thereof as well as recombinant cells containing these nucleic acid sequences and constructs containing wherein these nucleic acid sequences or constructs may be extrachromosomal or integrated into the host cell genome.

The invention further contemplates vectors comprising the polynucleotide sequences encoding the variable heavy and light chain polypeptide sequences, as well as the individual complementarity determining regions (CDRs, or hypervariable regions) set forth herein, as well as host cells comprising said sequences. In one embodiment of the invention, the host cell is a yeast cell. In another embodiment of the invention, the yeast host cell belongs to the genus Pichia.

In some instances, more than one exemplary polynucleotide encoding a given polypeptide sequence is provided, as summarized in Table 4.

TABLE-US-00011 TABLE 4 Multiple exemplary polynucleotides encoding particular polypeptides. Polypeptide Exemplary coding SEQ ID NO SEQ ID NOs 4 12, 111, 694 5 13, 112, 389, 501 6 14, 113, 695 9 17, 116, 697 39 47, 260 40 48, 261 60 68, 265 72 80, 325, 565, 581 89 97, 134, 166 103 12, 111, 694 104 13, 112, 389, 501 105 14, 113, 695 108 17, 116, 697 126 97, 134, 166 158 97, 134, 166 190 198, 214 191 199, 215 205 213, 469, 485 206 198, 214 207 199, 215 252 47, 260 253 48, 261 257 68, 265 317 80, 325, 565, 581 333 341, 533 381 13, 112, 389, 501 415 423, 439 431 423, 439 461 213, 469, 485 475 483, 499 476 484, 500 477 213, 469, 485 478 486, 502 479 487, 503 480 488, 504 481 489, 505 491 483, 499 492 484, 500 493 13, 112, 389, 501 494 486, 502 495 487, 503 496 488, 504 497 489, 505 525 341, 533 545 553, 585 554 562, 578 556 564, 580 557 80, 325, 565, 581 558 566, 582 570 562, 578 572 564, 580 573 80, 325, 565, 581 574 566, 582 577 553, 585

In some instances, multiple sequence identifiers refer to the same polypeptide or polynucleotide sequence, as summarized in Table 4. References to these sequence identifiers are understood to be interchangeable, except where context indicates otherwise.

TABLE-US-00012 TABLE 5 Repeated sequences. Each cell lists a group of repeated sequences included in the sequence listing. SEQ ID NOs of repeated sequences 4, 103 5, 104, 381, 493 6, 105 9, 108 12, 111 13, 112 14, 113 17, 116 39, 252 40, 253 48, 261 60, 257 68, 265 72, 317, 557, 573 80, 325, 565, 581 89, 126, 158 97, 134, 166 120, 659 190, 206 191, 207 198, 214 199, 215 205, 461, 477 213, 469 333, 525 415, 431 423, 439 475, 491 476, 492 478, 494 479, 495 480, 496 481, 497 483, 499 484, 500 486, 502 487, 503 488, 504 489, 505 545, 577 554, 570 556, 572 558, 574 562, 578 564, 580 566, 582

Certain exemplary embodiments include polynucleotides that hybridize under moderately or highly stringent hybridization conditions to a polynucleotide having one of the exemplary coding sequences recited in Table 1, and also include polynucleotides that hybridize under moderately or highly stringent hybridization conditions to a polynucleotide encoding the same polypeptide as a polynucleotide having one of the exemplary coding sequences recited in Table 1, or polypeptide encoded by any of the foregoing polynucleotides.

The phrase "high stringency hybridization conditions" refers to conditions under which a probe will hybridize to its target subsequence, typically in a complex mixture of nucleic acid, but to no other sequences. High stringency conditions are sequence dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in Tijssen, Techniques in Biochemistry and Molecular Biology--Hybridization with Nucleic Probes, "Overview of principles of hybridization and the strategy of nucleic acid assays" (1993). Generally, high stringency conditions are selected to be about 5-10.degree. C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength pH. The Tm is the temperature (under defined ionic strength, pH, and nucleic concentration) at which 50% of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at Tm, 50% of the probes are occupied at equilibrium). High stringency conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30.degree. C. for short probes (e.g., 10 to 50 nucleotides) and at least about 60.degree. C. for long probes (e.g., greater than 50 nucleotides). High stringency conditions may also be achieved with the addition of destabilizing agents such as formamide. For selective r specific hybridization, a positive signal is at least two times background, optionally 10 times background hybridization. Exemplary high stringency hybridization conditions can be as following: 50% formamide, 5.times.SSC, and 1% SDS, incubating at 42.degree. C., or, 5.times.SSC, 1% SDS, incubating at 65.degree. C., with wash in 0.2.times.SSC, and 0.1% SDS at 65.degree. C. Such hybridizations and wash steps can be carried out for, e.g., 1, 2, 5, 10, 15, 30, 60; or more minutes.

Nucleic acids that do not hybridize to each other under high stringency conditions are still substantially related if the polypeptides that they encode are substantially related. This occurs, for example, when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. In such cases, the nucleic acids typically hybridize under moderate stringency hybridization conditions. Exemplary "moderate stringency hybridization conditions" include a hybridization in a buffer of 40% formamide, 1 M NaCl, 1% SDS at 37.degree. C., and a wash in 1.times.SSC at 45.degree. C. Such hybridizations and wash steps can be carried out for, e.g., 1, 2, 5, 10, 15, 30, 60, or more minutes. A positive hybridization is at least twice background. Those of ordinary skill will readily recognize that alternative hybridization and wash conditions can be utilized to provide conditions of similar stringency.

Additional Exemplary Embodiments of the Invention

In another embodiment, the invention contemplates one or more anti-IL-6 antibodies or antibody fragments or variants thereof which may specifically bind to the same linear or conformational epitope(s) and/or compete for binding to the same linear or conformational epitope(s) on an intact human IL-6 polypeptide or fragment thereof as an anti-IL-6 antibody comprising Ab1 and chimeric, humanized, single chain antibodies and fragments thereof (containing one or more CDRs of the afore-identified antibodies) that specifically bind IL-6, which preferably are aglycosylated. In a preferred embodiment, the anti-IL-6 antibody or fragment or variant thereof may specifically bind to the same linear or conformational epitope(s) and/or compete for binding to the same linear or conformational epitope(s) on an intact human IL-6 polypeptide or a fragment thereof as Ab1 and chimeric, humanized, single chain antibodies and fragments thereof (containing one or more CDRs of the afore-mentioned antibody) that specifically bind IL-6, which preferably are aglycosylated.

In another embodiment of the invention, the anti-IL-6 antibody which may specifically bind to the same linear or conformational epitopes on an intact IL-6 polypeptide or fragment thereof that is (are) specifically bound by Ab1 may bind to an IL-6 epitope(s) ascertained by epitopic mapping using overlapping linear peptide fragments which span the full length of the native human IL-6 polypeptide. In one embodiment of the invention, the IL-6 epitope comprises, or alternatively consists of, one or more residues comprised in IL-6 fragments selected from those respectively encompassing amino acid residues 37-51, amino acid residues 70-84, amino acid residues 169-183, amino acid residues 31-45 and/or amino acid residues 58-72.

The invention is also directed to an anti-IL-6 antibody that binds with the same IL-6 epitope and/or competes with an anti-IL-6 antibody for binding to IL-6 as an antibody or antibody fragment disclosed herein, including but not limited to an anti-IL-6 antibody selected from Ab1 and chimeric, humanized, single chain antibodies and fragments thereof (containing one or more CDRs of the afore-mentioned antibody) that specifically bind IL-6, which preferably are aglycosylated.

In another embodiment, the invention is also directed to an isolated anti-IL-6 antibody or antibody fragment or variant thereof comprising one or more of the CDRs contained in the V.sub.H polypeptide sequences comprising: SEQ ID NO: 3, 18, 19, 22, 38, 54, 70, 86, 102, 117, 118, 123, 139, 155, 171, 187, 203, 219, 235, 251, 267, 283, 299, 315, 331, 347, 363, 379, 395, 411, 427, 443, 459, 475, 491, 507, 523, 539, 555, 571, 652, 656, 657, 658, 661, 664, 665, 668, 672, 676, 680, 684, 688, 691, 692, 704, or 708 and/or one or more of the CDRs contained in the V.sub.L polypeptide sequence consisting of: 2, 20, 21, 37, 53, 69, 85, 101, 119, 122, 138, 154, 170, 186, 202, 218, 234, 250, 266, 282, 298, 314, 330, 346, 362, 378, 394, 410, 426, 442, 458, 474, 490, 506, 522, 538, 554, 570, 647, 651, 660, 666, 667, 671, 675, 679, 683, 687, 693, 699, 702, 706, or 709 and the VH and VL sequences depicted in the antibody alignments comprised in FIGS. 34-37 of this application.

In one embodiment of the invention, the anti-IL-6 antibody discussed in the two prior paragraphs comprises at least 2 complementarity determining regions (CDRs) in each the variable light and the variable heavy regions which are identical to those contained in an anti-IL-6 antibody comprising Ab1 and chimeric, humanized, single chain antibodies and fragments thereof (containing one or more CDRs of the afore-mentioned antibody) that specifically bind IL-6, which preferably are aglycosylated.

In a preferred embodiment, the anti-IL-6 antibody discussed above comprises at least 2 complementarity determining regions (CDRs) in each the variable light and the variable heavy regions which are identical to those contained in Ab1. In another embodiment, all of the CDRs of the anti-IL-6 antibody discussed above are identical to the CDRs contained in an anti-IL-6 antibody comprising Ab1 and chimeric, humanized, single chain antibodies and fragments thereof (containing one or more CDRs of the afore-mentioned antibody) that specifically bind IL-6, which preferably are aglycosylated. In a preferred embodiment of the invention, all of the CDRs of the anti-IL-6 antibody discussed above are identical to the CDRs contained in Ab1, e.g., an antibody comprised of the VH and VL sequences comprised in SEQ ID NO: 657 and SEQ ID NO: 709 respectively.

The invention further contemplates that the one or more anti-IL-6 antibodies discussed above are aglycosylated; that contain an Fc region that has been modified to alter effector function, half-life, proteolysis, and/or glycosylation; are human, humanized, single chain or chimeric; and are a humanized antibody derived from a rabbit (parent) anti-IL-6 antibody. Exemplary constant regions that provide for the production of aglycosylated antibodies in Pichia are comprised in SEQ ID NO: 588 and SEQ ID NO: 586 which respectively are encoded by the nucleic acid sequences in SEQ ID NO: 589 and SEQ ID NO: 587.

The invention further contemplates one or more anti-IL-6 antibodies wherein the framework regions (Fits) in the variable light region and the variable heavy regions of said antibody respectively are human FRs which are unmodified or which have been modified by the substitution of at most 2 or 3 human FR residues in the variable light or heavy chain region with the corresponding FR residues of the parent rabbit antibody, and wherein said human FRs have been derived from human variable heavy and light chain antibody sequences which have been selected from a library of human germline antibody sequences based on their high level of homology to the corresponding rabbit variable heavy or light chain regions relative to other human germline antibody sequences contained in the library.

In one embodiment of the invention, the anti-IL-6 antibody or fragment or variant thereof may specifically bind to IL-6 expressing human cells and/or to circulating soluble IL-6 molecules in vivo, including IL-6 expressed on or by human cells in a patient with a disease associated with cells that express IL-6.

In another embodiment, the disease is selected from general fatigue, exercise-induced fatigue, cancer-related fatigue, inflammatory disease-related fatigue, chronic fatigue syndrome, fibromyalgia, cancer-related cachexia, cardiac-related cachexia, respiratory-related cachexia, renal-related cachexia, age-related cachexia, rheumatoid arthritis, systemic lupus erythematosis (SLE), systemic juvenile idiopathic arthritis, psoriasis, psoriatic arthropathy, ankylosing spondylitis, inflammatory bowel disease (IBD), polymyalgia rheumatica, giant cell arteritis, autoimmune vasculitis, graft versus host disease (GVHD), Sjogren's syndrome, adult onset Still's disease, rheumatoid arthritis, systemic juvenile idiopathic arthritis, osteoarthritis, osteoporosis, Paget's disease of bone, osteoarthritis, multiple myeloma, Hodgkin's lymphoma, non-Hodgkin's lymphoma, prostate cancer, leukemia, renal cell cancer, multicentric Castleman's disease, ovarian cancer, drug resistance in cancer chemotherapy, cancer chemotherapy toxicity, ischemic heart disease, atherosclerosis, obesity, diabetes, asthma, multiple sclerosis, Alzheimer's disease, cerebrovascular disease, fever, acute phase response, allergies, anemia, anemia of inflammation (anemia of chronic disease), hypertension, depression, depression associated with a chronic illness, thrombosis, thrombocytosis, acute heart failure, metabolic syndrome, miscarriage, obesity, chronic prostatitis, glomerulonephritis, pelvic inflammatory disease, reperfusion injury, transplant rejection, graft versus host disease (GVHD), avian influenza, smallpox, pandemic influenza, adult respiratory distress syndrome (ARDS), severe acute respiratory syndrome (SARS), sepsis, and systemic inflammatory response syndrome (SIRS). In a preferred embodiment, the disease is selected from a cancer, inflammatory disorder, viral disorder, or autoimmune disorder. In a particularly preferred embodiment, the disease is arthritis, cachexia, and wasting syndrome

The invention further contemplates anti-IL-6 antibodies or fragments or variants thereof directly or indirectly attached to a detectable label or therapeutic agent.

The invention also contemplates one or more nucleic acid sequences which result in the expression of an anti-IL-6 antibody or antibody fragment or variant thereof as set forth above, including those comprising, or alternatively consisting of, yeast or human preferred codons. The invention also contemplates vectors (including plasmids or recombinant viral vectors) comprising said nucleic acid sequence(s). The invention also contemplates host cells or recombinant host cells expressing at least one of the antibodies set forth above, including a mammalian, yeast, bacterial, and insect cells. In a preferred embodiment, the host cell is a yeast cell. In a further preferred embodiment, the yeast cell is a diploidal yeast cell. In a more preferred embodiment, the yeast cell is a Pichia yeast.

The invention also contemplates a method of treatment comprising administering to a patient with a disease or condition associated with IL-6 expressing cells a therapeutically effective amount of at least one anti-IL-6 antibody or fragment or variant thereof. The diseases that may be treated are presented in the non-limiting list set forth above. In a preferred embodiment, the disease is selected from a cancer, autoimmune disease, or inflammatory condition. In a particularly preferred embodiment, the disease is cancer or viral infection. In another embodiment the treatment further includes the administration of another therapeutic agent or regimen selected from chemotherapy, radiotherapy, cytokine administration or gene therapy.

The invention further contemplates a method of in vivo imaging which detects the presence of cells which express IL-6 comprising administering a diagnostically effective amount of at least one anti-IL-6 antibody. In one embodiment, said administration further includes the administration of a radionuclide or fluorophore that facilitates detection of the antibody at IL-6 expressing disease sites. In another embodiment of the invention, the method of in vivo imaging is used to detect IL-6 expressing tumors or metastases or is used to detect the presence of sites of autoimmune disorders associated with IL-6 expressing cells. In a further embodiment, the results of said in vivo imaging method are used to facilitate design of an appropriate therapeutic regimen, including therapeutic regimens including radiotherapy, chemotherapy or a combination thereof.

Anti-IL-6 Activity

As stated previously, IL-6 is a member of a family of cytokines that promote cellular responses through a receptor complex consisting of at least one subunit of the signal-transducing glycoprotein gp130 and the IL-6 receptor (IL-6R), The IL-6R may also be present in a soluble form (sIL-6R). IL-6 binds to IL-6R, which then dimerizes the signal-transducing receptor gp130.

It is believed that the anti-IL-6 antibodies of the invention, or IL-6 binding fragments r variants thereof, are useful by exhibiting anti-IL-6 activity. In one non-limiting embodiment of the invention, the anti-IL-6 antibodies of the invention, or IL-6 binding fragments or variants thereof, exhibit anti-IL-6 activity by binding to IL-6 which may be soluble IL-6 or cell surface expressed IL-6 and/or may prevent or inhibit the binding of IL-6 to IL-6R and/or activation (dimerization) of the gp130 signal-transducing glycoprotein and the formation of IL-6/IL-6R/gp130 multimers and the biological effects of any of the foregoing. The subject anti-IL-6 antibodies may possess different antagonistic activities based on where (i.e., epitope) the particular antibody binds IL-6 and/or how it affects the formation of the foregoing IL-6 complexes and/or multimers and the biological effects thereof. Consequently, different anti-IL-6 antibodies according to the invention e.g., may be better suited for preventing or treating conditions involving the formation and accumulation of substantial soluble IL-6 such as rheumatoid arthritis whereas other antibodies may be favored in treatments wherein the prevention of IL-6/IL-6R/gp130 or IL-6/IL-6R/gp130 multimers is a desired therapeutic outcome. This can be determined in binding and other assays.

The anti-IL-6 activity of the anti-IL-6 antibody of the present invention, and fragments and variants thereof having binding specificity to IL-6, may also be described by their strength of binding or their affinity for IL-6. This also may affect their therapeutic properties. In one embodiment of the invention, the anti-IL-6 antibodies of the present invention, and fragments thereof having binding specificity to IL-6, bind to IL-6 with a dissociation constant (K.sub.1)) of less than or equal to 5.times.10.sup.-7, 10.sup.-7, 5.times.10.sup.-8, 10.sup.-8, 5.times.10.sup.-9, 10.sup.-9, 5.times.10.sup.-10, 10.sup.-10, 5.times.10.sup.-11, 10.sup.-11, 5.times.10.sup.-12, 10.sup.-12, 5.times.10.sup.-13, 10.sup.-13, 5.times.10.sup.-14, 10.sup.-14, 5.times.10.sup.-15 or 10.sup.-15. Preferably, the anti-TL-6 antibodies and fragments and variants thereof bind IL-6 with a dissociation constant of less than or equal to 5.times.10.sup.-10.

In another embodiment of the invention, the anti-IL-6 activity of the anti-IL-6 antibodies of the present invention, and fragments and variants thereof having binding specificity to IL-6, bind to IL-6 with an off-rate of less than or equal to 10.sup.-4 S.sup.-1, 5.times.10.sup.-5 S.sup.-1, 10.sup.-5 S.sup.-1, 5.times.10.sup.-6 S.sup.-1, 10.sup.-6 S.sup.-1, 5.times.10.sup.-7 S.sup.-1, or 10.sup.-7 S.sup.-1. In one embodiment of the invention, the anti-IL-6 antibodies of the invention, and fragments and variants thereof having binding specificity to IL-6, hind to a linear or conformational IL-6 epitope.

In a further embodiment of the invention, the anti-IL-6 activity of the anti-IL-6 antibodies of the present invention, and fragments and variants thereof having binding specificity to IL-6, exhibit anti-IL-6 activity by ameliorating or reducing the symptoms of, or alternatively treating, or preventing, diseases and disorders associated with IL-6. Non-limiting examples of diseases and disorders associated with IL-6 are set forth infra. As noted cancer-related fatigue, cachexia and rheumatoid arthritis are preferred indications for the subject anti-IL-6 antibodies.

In another embodiment of the invention, the anti-IL-6 antibodies described herein, or IL-6 binding fragments and variants thereof, do not have binding specificity for IL-6R or the gp-130 signal-transducing glycoprotein.

B-Cell Screening and Isolation

In one embodiment, the present invention provides methods of isolating a clonal population of antigen-specific B cells that may be used for isolating at least one antigen-specific cell. As described and exemplified infra, these methods contain a series of culture and selection steps that can be used separately, in combination, sequentially, repetitively, or periodically. Preferably, these methods are used for isolating at least one antigen-specific cell, which can be used to produce a monoclonal antibody, which is specific to a desired antigen, or a nucleic acid sequence corresponding to such an antibody.

In one embodiment, the present invention provides a method comprising the steps of: a. preparing a cell population comprising at least one antigen-specific B cell; b. enriching the cell population, e.g., by chromatography, to form an enriched cell population comprising at least one antigen-specific B cal; c. isolating a single B cell from the enriched B cell population; and d. determining whether the single B cell produces an antibody specific to the antigen.

In another embodiment, the present invention provides an improvement to a method of isolating a single, antibody-producing B cell, the improvement comprising enriching a B cell population obtained from a host that has been immunized or naturally exposed to an antigen, wherein the enriching step precedes any selection steps, comprises at least one culturing step, and results in a clonal population of B cells that produces a single monoclonal antibody specific to said antigen.

Throughout this application, a "clonal population of B cells" refers to a population of B cells that only secrete a single antibody specific to a desired antigen. That is to say that these cells produce only one type of monoclonal antibody specific to the desired antigen.

In the present application, "enriching" a cell population cells means increasing the frequency of desired cells, typically antigen-specific cells, contained in a mixed cell population, e.g., a B cell-containing isolate derived from a host that is immunized against a desired antigen. Thus, an enriched cell population encompasses a cell population having a higher frequency of antigen-specific cells as a result f' an enrichment step, but this population of cells may contain and produce different antibodies.

The general term "cell population" encompasses pre- and a post-enrichment cell populations, keeping in mind that when multiple enrichment steps are performed, a cell population can be both pre- and post-enrichment. For example, in one embodiment, the present invention provides a method: a. harvesting a cell population from an immunized host to obtain a harvested cell population; b. creating at least one single cell suspension from the harvested cell population; c. enriching at least one single cell suspension to form a first enriched cell population; d. enriching the first enriched cell population to form a second enriched cell population; e. enriching the second enriched cell population to form a third enriched cell population; and f. selecting an antibody produced by an antigen-specific cell of the third enriched cell population.

Each cell population may be used directly in the next step, or it can be partially or wholly frozen for long- or short-term storage or for later steps. Also, cells from a cell population can be individually suspended to yield single cell suspensions. The single cell suspension can be enriched, such that a single cell suspension serves as the pre-enrichment cell population. Then, one or more antigen-specific single cell suspensions together form the enriched cell population; the antigen-specific single cell suspensions can be grouped together, e.g., re-plated for further analysis and/or antibody production.

In one embodiment, the present invention provides a method of enriching a cell population to yield an enriched cell population having an antigen-specific cell frequency that is about 50% to about 100%, or increments therein, Preferably, the enriched cell population has an antigen-specific cell frequency greater than or equal to about 50%, 60%, 70%, 75%, 80%, 90%, 95%, 99%, or 100%.

In another embodiment, the present invention provides a method of enriching a cell population whereby the frequency of antigen-specific cells is increased by at least about 2-fold, 5-fold, 10-fold, 20-fold, 50-fold, 100-fold, or increments therein.

Throughout this application, the term "increment" is used to define a numerical value in varying degrees of precision, e.g., to the nearest 10, 1, 0.1, 0.01, etc. The increment can be rounded to any measurable degree of precision, and the increment need not be rounded to the same degree of precision on both sides of a range. For example, the range 1 to 100 or increments therein includes ranges such as 20 to 80, 5 to 50, and 0.4 to 98. When a range is open-ended, e.g., a range of less than 100, increments therein means increments between 100 and the measurable limit. For example, less than 100 or increments therein means 0 to 100 or increments therein unless the feature, e.g., temperature, is not limited by 0.

Antigen-specificity can be measured with respect to any antigen. The antigen can be any substance to which an antibody can bind including, but not limited to, peptides, proteins or fragments thereof; carbohydrates; organic and inorganic molecules; receptors produced by animal cells, bacterial cells, and viruses; enzymes; agonists and antagonists of biological pathways; hormones; and cytokines. Exemplary antigens include, but are not limited to, IL-2, IL-4, IL-6, IL-10, IL-12, IL-13, IL-18, IFN-alpha, IFN-gamma, BAFF, CXCL13, IP-10, VEGF, EPO, EGF, HRG, Hepatocyte Growth Factor (HGF) and Hepcidin. Preferred antigens include IL-6, IL-13, TNF-alpha, V EGF Hepatocyte Growth Factor (HGF) and Hepcidin. In a method utilizing more than one enrichment step, the antigen used in each enrichment step can be the same as or different from one another. Multiple enrichment steps with the same antigen may yield a large and/or diverse population of antigen-specific cells; multiple enrichment steps with different antigens may yield an enriched cell population with cross-specificity to the different antigens.

Enriching a cell population can be performed by any cell-selection means known in the art for isolating antigen-specific cells. For example, a cell population can be enriched by chromatographic techniques, e.g., Miltenyi bead or magnetic bead technology. The beads can be directly or indirectly attached to the antigen of interest. In a preferred embodiment, the method of enriching a cell population includes at least one chromatographic enrichment step.

A cell population can also be enriched by performed by any antigen-specificity assay technique known in the art, e.g., an ELISA assay or a halo assay. ELISA assays include, but are not limited to, selective antigen immobilization (e.g., biotinylated antigen capture by streptavidin, avidin, or neutravidin coated plate), non-specific antigen plate coating, and through an antigen build-up strategy (e.g., selective antigen capture followed by binding partner addition to generate a heteromeric protein-antigen complex). The antigen can be directly or indirectly attached to a solid matrix or support, e.g., a column. A halo assay comprises contacting the cells with antigen-Loaded beads and labeled anti-host antibody specific to the host used to harvest the B cells. The label can be, e.g., a fluorophore. In one embodiment, at least one assay enrichment step is performed on at least one single cell suspension. In another embodiment, the method of enriching a cell population includes at least one chromatographic enrichment step and at least one assay enrichment step.

Methods of "enriching" a cell population by size or density are known in the art. See, e.g., U.S. Pat. No. 5,627,052. These steps can be used in the present method in addition to enriching the cell population by antigen-specificity.

The cell populations of the present invention contain at least one cell capable of recognizing an antigen. Antigen-recognizing cells include, but are not limited to, B cells, plasma cells, and progeny thereof. In one embodiment, the present invention provides a clonal cell population containing a single type of antigen-specific B-cell, i.e., the cell population produces a single monoclonal antibody specific to a desired antigen.

In such embodiment, it is believed that the clonal antigen-specific population of B cells consists predominantly of antigen-specific, antibody-secreting cells, which are obtained by the novel culture and selection protocol provided herein. Accordingly, the present invention also provides methods for obtaining an enriched cell population containing at least one antigen-specific, antibody-secreting cell. In one embodiment, the present invention provides an enriched cell population containing about 50% to about 100%, or increments therein, or greater than or equal to about 60%, 70%, 80%, 90%, or 100% of antigen-specific, antibody-secreting cells.

In one embodiment, the present invention provides a method of isolating a single B cell by enriching a cell population obtained from a host before any selection steps, e.g., selecting a particular B cell from a cell population and/or selecting an antibody produced by a particular cell. The enrichment step can be performed as one, two, three, or more steps. In one embodiment, a single B cell is isolated from an enriched cell population before confirming whether the single B cell secretes an antibody with antigen-specificity and/or a desired property.

In one embodiment, a method of enriching a cell population is used in a method for antibody production and/or selection. Thus, the present invention provides a method comprising enriching a cell population before selecting an antibody. The method can include the steps of: preparing a cell population comprising at least one antigen-specific cell, enriching the cell population by isolating at least one antigen-specific cell to form an enriched cell population, and inducing antibody production from at least one antigen-specific cell. In a preferred embodiment, the enriched cell population contains more than one antigen-specific cell. In one embodiment, each antigen-specific cell of the enriched population is cultured under conditions that yield a clonal antigen-specific B cell population before isolating an antibody producing cell therefrom and/or producing an antibody using said B cell, or a nucleic acid sequence corresponding to such an antibody. In contrast to prior techniques where antibodies are produced from a cell population with a low frequency of antigen-specific cells, the present invention allows antibody selection from among a high frequency of antigen-specific cells. Because an enrichment step is used prior to antibody selection, the majority of the cells, preferably virtually all of the cells, used for antibody production are antigen-specific. By producing antibodies from a population of cells with an increased frequency of antigen specificity, the quantity and variety of antibodies are increased.

In the antibody selection methods of the present invention, an antibody is preferably selected after an enrichment step and a culture step that results in a clonal population of antigen-specific B cells. The methods can further comprise a step of sequencing a selected antibody or portions thereof from one or more isolated, antigen-specific cells. Any method known in the art for sequencing can be employed and can include sequencing the heavy chain, light chain, variable region(s), and/or complementarity determining region(s) (CDR).

In addition to the enrichment step, the method for antibody selection can also include one or more steps of screening a cell population for antigen recognition and/or antibody functionality. For example, the desired antibodies may have specific structural features, such as binding to a particular epitope or mimicry of a particular structure; antagonist or agonist activity; or neutralizing activity, e.g., inhibiting binding between the antigen and a ligand. In one embodiment, the antibody functionality screen is ligand-dependent. Screening for antibody functionality includes, but is not limited to, an in vitro protein-protein interaction assay that recreates the natural interaction of the antigen ligand with recombinant receptor protein; and a cell-based response that is ligand dependent and easily monitored (e.g., proliferation response). In one embodiment, the method for antibody selection includes a step of screening the cell population for antibody functionality by measuring the inhibitory concentration (1050). In one embodiment, at least one of the isolated, antigen-specific cells produces an antibody having an 1050 of less than about 100, 50, 30, 25, 10 pig/mL, or increments therein.

In addition to the enrichment step, the method for antibody selection can also include one or more steps of screening a cell population for antibody binding strength. Antibody binding strength can be measured by any method known in the art (e.g., Biacore.TM.). In one embodiment, at least one of the isolated, antigen-specific cells produces an antibody having a high antigen affinity, e.g., a dissociation constant (Kd) of less than about 5.times.10.sup.-10 M-1, preferably about 1.times.10.sup.-13 to 5.times.10.sup.-10, 1.times.10.sup.-12 to 1.times.10.sup.-10, 1.times.10.sup.-12 to 7.5.times.10.sup.-11, 1.times.10.sup.-11 to 2.times.10.sup.-11, about 1.5.times.10.sup.-11 or less, or increments therein. In this embodiment, the antibodies are said to be affinity mature. In a preferred embodiment, the affinity of the antibodies is comparable to or higher than the affinity of any one of Panorex.RTM. (edrecolomab), Rituxan.RTM. (rituximab), Herceptin.RTM. (traztuzumab), Mylotarg.RTM. (gentuzumab), Campath.RTM. (alemtuzumab), Zevalin.TM. (ibritumomab), Erbitux.TM. (cetuximab), Avastin.TM. (bevicizumab), Raptiva.TM. (efalizumab), Remicade.RTM. (infliximab), Humira.TM. (adalimumab), and Xolair.TM. (omalizumab). Preferably, the affinity of the antibodies is comparable to or higher than the affinity of Humira.TM.. The affinity of an antibody can also be increased by known affinity maturation techniques. In one embodiment, at least one cell population is screened for at least one of, preferably both, antibody functionality and antibody binding strength.

In addition to the enrichment step, the method for antibody selection can also include one or more steps of screening a cell population for antibody sequence homology, especially human homology. In one embodiment, at least one of the isolated, antigen-specific cells produces an antibody that has a homology to a human antibody of about 50% to about 100%, or increments therein, or greater than about 60%, 70%, 80%, 85%, 90%, or 95% homologous. The antibodies can be humanized to increase the homology to a human sequence by techniques known in the art such as CDR grafting or selectivity determining residue grafting (SDR).

In another embodiment, the present invention also provides the antibodies themselves according to any of the embodiments described above in terms of IC50, Kd, and/or homology.

The B cell selection protocol disclosed herein has a number of intrinsic advantages versus other methods for obtaining antibody-secreting B cells and monoclonal antibodies specific to desired target antigens. These advantages include, but are not restricted to, the following:

First, it has been found that when these selection procedures are utilized with a desired antigen such as IL-6 or TNF-alpha, the methods reproducibly result in antigen-specific B cells capable of generating what appears to be a substantially comprehensive complement of antibodies, i.e., antibodies that bind to the various different epitopes of the antigen. Without being bound by theory, it is hypothesized that the comprehensive complement is attributable to the antigen enrichment step that is performed prior to initial B cell recovery. Moreover, this advantage allows for the isolation and selection of antibodies with different properties as these properties may vary depending on the epitopic specificity of the particular antibody.

Second, it has been found that the B cell selection protocol reproducibly yields a clonal B cell culture containing a single B cell, or its progeny, secreting a single monoclonal antibody that generally binds to the desired antigen with a relatively high binding affinity, i.e. picomolar or better antigen binding affinities. By contrast, prior antibody selection methods tend to yield relatively few high affinity antibodies and therefore require extensive screening procedures to isolate an antibody with therapeutic potential. Without being hound by theory, it is hypothesized that the protocol results in both in vivo B cell immunization of the host (primary immunization) followed by a second in vitro B cell stimulation (secondary antigen priming step) that may enhance the ability and propensity of the recovered clonal B cells to secrete a single high affinity monoclonal antibody specific to the antigen target.

Third, it has been observed (as shown herein with IL-6 specific B cells) that the B cell selection protocol reproducibly yields enriched B cells producing IgG's that are, on average, highly selective (antigen specific) to the desired target. Antigen-enriched B cells recovered by these methods are believed to contain B cells capable of yielding the desired full complement of epitopic specificities as discussed above.

Fourth, it has been observed that the B cell selection protocols, even when used with small antigens, i.e., peptides of 100 amino acids or less, e.g., 5-50 amino acids long, reproducibly give rise to a clonal B cell culture that secretes a single high affinity antibody to the small antigen, e.g., a peptide. This is highly surprising as it is generally quite difficult, labor intensive, and sometimes not even feasible to produce high affinity antibodies to small peptides. Accordingly, the invention can be used to produce therapeutic antibodies to desired peptide targets, e.g., viral, bacterial or autoantigen peptides, thereby allowing for the production of monoclonal antibodies with very discrete binding properties or even the production of a cocktail of monoclonal antibodies to different peptide targets, e.g., different viral strains. This advantage may especially be useful in the context of the production of a therapeutic or prophylactic vaccine having a desired valency, such as an HPV vaccine that induces protective immunity to different HPV strains.

Fifth, the B cell selection protocol, particularly when used with B cells derived from rabbits, tends to reproducibly yield antigen-specific antibody sequences that are very similar to endogenous human immunoglobulins (around 90% similar at the amino acid level) and that contain CDRs that possess a length very analogous to human immunoglobulins and therefore require little or no sequence modification (typically at most only a few CDR residues may be modified in the parent antibody sequence and no framework exogenous residues introduced) in order to eliminate potential immunogenicity concerns. In particular, preferably the recombinant antibody will contain only the host (rabbit) CDR1 and CDR2 residues required for antigen recognition and the entire CDR3. Thereby, the high antigen binding affinity of the recovered antibody sequences produced according to the B cell and antibody selection protocol remains intact or substantially intact even with humanization.

In sum, these methods can be used to produce antibodies exhibiting higher binding affinities to more distinct epitopes by the use of a more efficient protocol than was previously known.

In a specific embodiment, the present invention provides a method for identifying a single B cell that secretes an antibody specific to a desired antigen and that optionally possesses at least one desired functional property such as affinity, avidity, cytolytic activity, and the like by a process including the following steps: a. immunizing a host against an antigen; b. harvesting B cells from the host; c. enriching the harvested 13 cells to increase the frequency of antigen-specific cells; d. creating at least one single cell suspension; e. culturing a sub-population from the single cell suspension under conditions that favor the survival of a single antigen-specific B cell per culture well; f. isolating B cells from the sub-population; and g. determining whether the single B cell produces an antibody specific to the antigen.

Typically, these methods will further comprise an additional step of isolating and sequencing, in whole or in part, the polypeptide and nucleic acid sequences encoding the desired antibody. These sequences or modified versions or portions thereof can be expressed in desired host cells in order to produce recombinant antibodies to a desired antigen.

As noted previously, it is believed that the clonal population of B cells predominantly comprises antibody-secreting B cells producing antibody against the desired antigen. It is also believed based on experimental results obtained with several antigens and with different B cell populations that the clonally produced B cells and the isolated antigen-specific B cells derived therefrom produced according to the invention secrete a monoclonal antibody that is typically of relatively high affinity and moreover is capable of efficiently and reproducibly producing a selection of monoclonal antibodies of greater epitopic variability as compared to other methods of deriving monoclonal antibodies from cultured antigen-specific B cells. In an exemplary embodiment the population of immune cells used in such 13 cell selection methods will be derived from a rabbit. However, other hosts that produce antibodies, including non-human and human hosts, can alternatively be used as a source of immune B cells. It is believed that the use of rabbits as a source of B cells may enhance the diversity of monoclonal antibodies that may be derived by the methods. Also, the antibody sequences derived from rabbits according to the invention typically possess sequences having a high degree of sequence identity to human antibody sequences making them Favored for use in humans since they should possess little antigenicity. In the course of humanization, the final humanized antibody contains a much lower foreign/host residue content, usually restricted to a subset of the host CDR residues that differ dramatically due to their nature versus the human target sequence used in the grafting. This enhances the probability of complete activity recovery in the humanized antibody protein.

The methods of antibody selection using an enrichment step disclosed herein include a step of obtaining an immune cell-containing cell population from an immunized host. Methods of obtaining an immune cell-containing cell population from an immunized host are known in the art and generally include inducing an immune response in a host and harvesting cells from the host to obtain one or more cell populations. The response can be elicited by immunizing the host against a desired antigen. Alternatively, the host used as a source of such immune cells can be naturally exposed to the desired antigen such as an individual who has been infected with a particular pathogen such as a bacterium or virus or alternatively has mounted a specific antibody response to a cancer that the individual is afflicted with.

Host animals are well-known in the art and include, but are not limited to, guinea pig, rabbit, mouse, rat, non-human primate, human, as well as other mammals and rodents, chicken, cow, pig, goat, and sheep. Preferably the host is a mammal, more preferably, rabbit, mouse, rat, r human. When exposed to an antigen, the host produces antibodies as part of the native immune response to the antigen. As mentioned, the immune response can occur naturally, as a result of disease, or it can be induced by immunization with the antigen. Immunization can be performed by any method known in the art, such as, by one or more injections of the antigen with or without an agent to enhance immune response, such as complete or incomplete Freund's adjuvant. In another embodiment, the invention also contemplates intrasplenic immunization. As an alternative to immunizing a host animal in vivo, the method can comprise immunizing a host cell culture in vitro.

After allowing time for the immune response (e.g., as measured by serum antibody detection), host animal cells are harvested to obtain one or more cell populations. In a preferred embodiment, a harvested cell population is screened for antibody binding strength and/or antibody functionality. A harvested cell population is preferably from at least one of the spleen, lymph nodes, bone marrow, and/or peripheral blood mononuclear cells (PBMCs). The cells can be harvested from more than one source and pooled. Certain sources may be preferred for certain antigens. For example, the spleen, lymph nodes, and PBMCs are preferred for IL-6; and the lymph nodes are preferred for TNF. The cell population is harvested about 20 to about 90 days or increments therein after immunization, preferably about 50 to about 60 days. A harvested cell population and/or a single cell suspension therefrom can be enriched, screened, and/or cultured for antibody selection. The frequency of antigen-specific cells within a harvested cell population is usually about 1% to about 5%, or increments therein.

In one embodiment, a single cell suspension from a harvested cell population is enriched, preferably by using Miltenyi beads. From the harvested cell population having a frequency of antigen-specific cells of about 1% to about 5%, an enriched cell population is thus derived having a frequency of antigen-specific cells approaching 100%.

The method of antibody selection using an enrichment step includes a step of producing antibodies from at least one antigen-specific cell from an enriched cell population. Methods of producing antibodies in vitro are well known in the art, and any suitable method can be employed. In one embodiment, an enriched cell population, such as an antigen-specific single cell suspension from a harvested cell population, is plated at various cell densities, such as 50, 100, 250, 500, or other increments between 1 and 1000 cells per well. Preferably, the sub-population comprises no more than about 10,000 antigen-specific, antibody-secreting cells, more preferably about 50-10,000, about 50-5,000, about 50-1,000, about 50-500, about 50-250 antigen-specific, antibody-secreting cells, or increments therein. Then, these sub-populations are cultured with suitable medium (e.g., an activated T cell conditioned medium, particularly 1-5% activated rabbit T cell conditioned medium) on a feeder layer, preferably under conditions that favor the survival of a single proliferating antibody-secreting cell per culture well. The feeder layer, generally comprised of irradiated cell matter, e.g., EL4B cells, does not constitute part of the cell population. The cells are cultured in a suitable media for a time sufficient for antibody production, for example about 1 day to about 2 weeks, about 1 day to about 10 days, at least about 3 days, about 3 to about 5 days, about 5 days to about 7 days, at least about 7 days, or other increments therein. In one embodiment, more than one sub-population is cultured simultaneously. Preferably, a single antibody-producing cell and progeny thereof survives in each well, thereby providing a clonal population of antigen-specific B cells in each well. At this stage, the immunoglobulin G (IgG) produced by the clonal population is highly correlative with antigen specificity. In a preferred embodiment, the IgGs exhibit a correlation with antigen specificity that is greater than about 50%, more preferably greater than 70%, 85%, 90%, 95%, 99%, or increments therein. See FIG. 3, which demonstrates an exemplary correlation for IL-6. The correlations were demonstrated by setting up B cell cultures under limiting conditions to establish single antigen-specific antibody products per well. Antigen-specific versus general IgG synthesis was compared. Three populations were observed: IgG that recognized a single format of antigen (biotinylated and direct coating), detectable IgG and antigen recognition irrespective of immobilization, and IgG production alone. IgG production was highly correlated with antigen-specificity.

A supernatant containing the antibodies is optionally collected, which can be enriched, screened, and/or cultured for antibody selection according to the steps described above. In one embodiment, the supernatant is enriched (preferably by an antigen-specificity assay, especially an ELISA assay) and/or screened for antibody functionality.

In another embodiment, the enriched, preferably clonal, antigen-specific B cell population from which a supernatant described above is optionally screened in order to detect the presence of the desired secreted monoclonal antibody is used for the isolation of a few B cells, preferably a single B cell, which is then tested in an appropriate assay in order to confirm the presence of a single antibody-producing B cell in the clonal B cell population. In one embodiment about 1 to about 20 cells are isolated from the clonal B cell population, preferably less than about 15, 12, 10, 5, or 3 cells, or increments therein, most preferably a single cell. The screen is preferably effected by an antigen-specificity assay, especially a halo assay. The halo assay can be performed with the full length protein, or a fragment thereof. The antibody-containing supernatant can also be screened for at least one of: antigen binding affinity; agonism or antagonism of antigen-ligand binding, induction or inhibition of the proliferation of a specific target cell type; induction or inhibition of lysis of a target cell, and induction or inhibition of a biological pathway involving the antigen.

The identified antigen-specific cell can be used to derive the corresponding nucleic acid sequences encoding the desired monoclonal antibody. (An Alul digest can confirm that only a single monoclonal antibody type is produced per well.) As mentioned above, these sequences can be mutated, such as by humanization, in order to render them suitable for use in human medicaments.

As mentioned, the enriched B cell population used in the process can also be further enriched, screened, and/or cultured for antibody selection according to the steps described above which can be repeated or performed in a different order. In a preferred embodiment, at least one cell of an enriched, preferably clonal, antigen-specific cell population is isolated, cultured, and used for antibody selection.

Thus, in one embodiment, the present invention provides a method comprising: a. harvesting a cell population from an immunized host to obtain a harvested cell population; b. creating at least one single cell suspension from a harvested cell population; c. enriching at least one single cell suspension, preferably by chromatography, to form a first enriched cell population; d. enriching the first enriched cell population, preferably by ELISA assay, to form a second enriched cell population which preferably is clonal, i.e., it contains only a single type of antigen-specific B cell; e. enriching the second enriched cell population, preferably by halo assay, to form a third enriched cell population containing a single or a few number of B cells that produce an antibody specific to a desired antigen; and f. selecting an antibody produced by an antigen-specific cell isolated from the third enriched cell population.

The method can further include one or more steps of screening the harvested cell population for antibody binding strength (affinity, avidity) and/or antibody functionality. Suitable screening steps include, but are not limited to, assay methods that detect: whether the antibody produced by the identified antigen-specific B cell produces an antibody possessing a minimal antigen binding affinity, whether the antibody agonizes or antagonizes the binding of a desired antigen to a ligand; whether the antibody induces or inhibits the proliferation of a specific cell type; whether the antibody induces or elicits a cytolytic reaction against target cells; whether the antibody binds to a specific epitope; and whether the antibody modulates (inhibits or agonizes) a specific biological pathway or pathways involving the antigen.

Similarly, the method can include one or more steps of screening the second enriched cell population for antibody binding strength and/or antibody functionality.

The method can further include a step of sequencing the polypeptide sequence or the corresponding nucleic acid sequence of the selected antibody. The method can also include a step of producing a recombinant antibody using the sequence, a fragment thereof, or a genetically modified version of the selected antibody. Methods for mutating antibody sequences in order to retain desired properties are well known to those skilled in the art and include humanization, chimerisation, production of single chain antibodies; these mutation methods can yield recombinant antibodies possessing desired effector function, immunogenicity, stability, removal or addition of glycosylation, and the like. The recombinant antibody can be produced by any suitable recombinant cell, including, but not limited to mammalian cells such as CHO, COS, BHK, HEK-293, bacterial cells, yeast cells, plant cells, insect cells, and amphibian cells. In one embodiment, the antibodies are expressed in polyploidal yeast cells, i.e., diploid yeast cells, particularly Pichia.

In one embodiment, the method comprises: a. immunizing a host against an antigen to yield host antibodies; b. screening the host antibodies for antigen specificity and neutralization; c. harvesting B cells from the host; d. enriching the harvested B cells to create an enriched cell population having an increased frequency of antigen-specific cells; e. culturing one or more sub-populations from the enriched cell population under conditions that favor the survival of a single B cell to produce a clonal population in at least one culture well; f. determining whether the clonal population produces an antibody specific to the antigen; g. isolating a single B cell; and h. sequencing the nucleic acid sequence of the antibody produced by the single B cell. Methods of Humanizing Antibodies

In another embodiment of the invention, there is provided a method for humanizing antibody heavy and light chains. In this embodiment, the following method is followed for the humanization of the heavy and light chains:

Light Chain

1. Identify the amino acid that is the first one following the signal peptide sequence. This is the start of Framework 1. The signal peptide starts at the first initiation methionine and is typically, but not necessarily 22 amino acids in length for rabbit light chain protein sequences. The start of the mature polypeptide can also be determined experimentally by N-terminal protein sequencing, or can be predicted using a prediction algorithm. This is also the start of Framework 1 as classically defined by those in the field.

Example: RbtVL Amino acid residue 1 in FIG. 2, starting `AYDM . . . `

2. Identify the end of Framework 3. This is typically 86-90 amino acids following the start of Framework 1 and is typically a cysteine residue preceded by two tyrosine residues. This is the end of the Framework 3 as classically defined by those in the field.

Example: RbtVL amino acid residue 88 in FIG. 2, ending as `TYYC`

3. Use the rabbit light chain sequence of the polypeptide starting from the beginning of Framework 1 to the end of Framework 3 as defined above and perform a sequence homology search for the most similar human antibody protein sequences. This will typically be a search against human germline sequences prior to antibody maturation in order to reduce the possibility of immunogenicity, however any human sequences can be used. Typically a program like BLAST can be used to search a database of sequences for the most homologous. Databases of human antibody sequences can be found from various sources such as NCBI (National Center for Biotechnology Information).

Example: RbtVL amino acid sequence from residues numbered 1 through 88 in FIG. 2 is BLASTed against a human antibody germline database. The top three unique returned sequences are shown in FIG. 2 as L12A, V1 and Vx02.

4. Generally the most homologous human germline variable light chain sequence is then used as the basis for humanization. However those skilled in the art may decide to use another sequence that wasn't the highest homology as determined by the homology algorithm, based on other factors including sequence gaps and framework similarities.

Example: In FIG. 2, L12A was the most homologous human germline variable light chain sequence and is used as the basis for the humanization of RbtVL.

5. Determine the framework and CDR arrangement (FR1, FR2, FR3, CDR1 CDR2) for the human homolog being used for the light chain humanization. This is using the traditional layout as described in the field. Align the rabbit variable light chain sequence with the human homolog, while maintaining the layout of the framework and CDR regions.

Example: In FIG. 2, the RbtVL sequence is aligned with the human homologous sequence L12A, and the framework and CDR domains are indicated.

6. Replace the human homologous light chain sequence CDR1 and CDR2 regions with the CDR1 and CDR2 sequences from the rabbit sequence. If there are differences in length between the rabbit and human CDR sequences then use the entire rabbit CDR sequences and their lengths. It is possible that the specificity, affinity and/or immunogenicity of the resulting humanized antibody may be unaltered if smaller or larger sequence exchanges are performed, or if specific residue(s) are altered, however the exchanges as described have been used successfully, but do not exclude the possibility that other changes may be permitted.

Example: In FIG. 2, the CDR1 and CDR2 amino acid residues of the human homologous variable light chain L12A are replaced with the CDR1 and CDR2 amino acid sequences from the RbtVL rabbit antibody light chain sequence. The human L12A frameworks 1, 2 and 3 are unaltered. The resulting humanized sequence is shown below as VLh from residues numbered 1 through 88. Note that the only residues that are different from the L12A human sequence are underlined, and are thus rabbit-derived amino acid residues. In this example only 8 of the 88 residues are different than the human sequence.

7. After framework 3 of the new hybrid sequence created in Step 6, attach the entire CDR3 of the rabbit light chain antibody sequence. The CDR3 sequence can be of various lengths, but is typically 9 to 15 amino acid residues in length. The CDR3 region and the beginning of the following framework 4 region are defined classically and identifiable by those skilled in the art. Typically the beginning of Framework 4, and thus after the end of CDR3 consists of the sequence `FGGG . . . `, however some variation may exist in these residues.

Example: In FIG. 2, the CDR3 of RbtVL (amino acid residues numbered 89-100) is added after the end of framework 3 in the humanized sequence indicated as VLh.

8. The rabbit light chain framework 4, which is typically the final 11 amino acid residues of the variable light chain and begins as indicated in Step 7 above and typically ends with the amino acid sequence ` . . . VVKR` is replaced with the nearest human light chain framework 4 homolog, usually from germline sequence. Frequently this human light chain framework 4 is of the sequence `FGGGTKVEIKR`. It is possible that other human light chain framework 4 sequences that are not the most homologous or otherwise different may be used without affecting the specificity, affinity and/or immunogenicity of the resulting humanized antibody. This human light chain framework 4 sequence is added to the end of the variable light chain humanized sequence immediately following the CDR3 sequence from Step 7 above. This is now the end of the variable light chain humanized amino acid sequence.

Example: In FIG. 2, Framework 4 (FR4) of the RbtVL rabbit light chain sequence is shown above a homologous human FR4 sequence. The human FR4 sequence is added to the humanized variable light chain sequence (VLh) right after the end of the CD3 region added in Step 7 above.

In addition, FIGS. 34 and 35 depict preferred humanized anti-IL-6 variable heavy and variable light chain sequences humanized from the variable heavy and light regions in Ab1 according to the invention. These humanized light and heavy chain regions are respectively contained in the polypeptides contained in SEQ ID NO: 647, or 651 and in SEQ ID NO: 652, 656, 657 or 658. The CDR2 of the humanized variable heavy region in SEQ ID NO: 657 (containing a serine substitution in CDR2) is contained in SEQ ID NO: 658. Alignments illustrating variants of the light and heavy chains are shown in FIGS. 36 and 37, respectively, with sequence differences within the CDR regions highlighted. Sequence identifiers of CDR sequences and of exemplary coding sequences are summarized in Table 1, above.

Heavy Chain

1. Identify the amino acid that is the first one following the signal peptide sequence. This is the start of Framework 1. The signal peptide starts at the first initiation methionine and is typically 19 amino acids in length for rabbit heavy chain protein sequences. Typically, but not necessarily always, the final 3 amino acid residues of a rabbit heavy chain signal peptide are ` . . . VQC`, followed by the start of Framework 1, The start of the mature polypeptide can also be determined experimentally by N-terminal protein sequencing, or can be predicted using a prediction algorithm. This is also the start of Framework 1 as classically defined by those in the field.

Example: RbtVH Amino acid residue 1 in FIG. 2, starting `QEQL . . . `

2. Identify the end of Framework 3. This is typically 95-100 amino acids following the start of Framework 1 and typically has the final sequence of ` . . . CAR` (although the alanine can also be a valine). This is the end of the Framework 3 as classically defined by those in the field.

Example: RbtVH amino acid residue 98 in FIG. 2, ending as ` . . . FCVR`.

3. Use the rabbit heavy chain sequence of the polypeptide starting from the beginning of Framework 1 to the end of Framework 3 as defined above and perform a sequence homology search for the most similar human antibody protein sequences. This will typically be against a database of human germline sequences prior to antibody maturation in order to reduce the possibility of immunogenicity, however any human sequences can be used. Typically a program like BLAST can be used to search a database of sequences for the most homologous. Databases of human antibody sequences can be found from various sources such as NCBI (National Center for Biotechnology Information).

Example: RbtVH amino acid sequence from residues numbered 1 through 98 in FIG. 2 is BLASTed against a human antibody germline database. The top three unique returned sequences are shown in FIG. 2 as 3-64-04, 3-66-04, and 3-53-02.

4. Generally the most homologous human germline variable heavy chain sequence is then used as the basis for humanization. However those skilled in the art may decide to use another sequence that wasn't the most homologous as determined by the homology algorithm, based on other factors including sequence gaps and framework similarities.

Example: 3-64-04 in FIG. 2 was the most homologous human germline variable heavy chain sequence and is used as the basis for the humanization of RbtVH.

5. Determine the framework and CDR arrangement (FR1, FR2, FR3, CDR1 & CDR2) for the human homolog being used for the heavy chain humanization. This is using the traditional layout as described in the field. Align the rabbit variable heavy chain sequence with the human homolog, while maintaining the layout of the framework and CDR regions.

Example: In FIG. 2, the RbtVH sequence is aligned with the human homologous sequence 3-64-04, and the framework and CDR domains are indicated.

6. Replace the human homologous heavy chain sequence CDR1 and CDR2 regions with the CDR1 and CDR2 sequences from the rabbit sequence. If there are differences in length between the rabbit and human CDR sequences then use the entire rabbit CDR sequences and their lengths. In addition, it may be necessary to replace the final three amino acids of the human heavy chain Framework 1 region with the final three amino acids of the rabbit heavy chain Framework 1. Typically but not always, in rabbit heavy chain Framework 1 these three residues follow a Glycine residue preceded by a Serine residue. In addition, it may be necessary replace the final amino acid of the human heavy chain Framework 2 region with the final amino acid of the rabbit heavy chain Framework 2. Typically, but not necessarily always, this is a Glycine residue preceded by an Isoleucine residue in the rabbit heavy chain Framework 2. It is possible that the specificity, affinity and/or immunogenicity of the resulting humanized antibody may be unaltered if smaller or larger sequence exchanges are performed, or if specific residue(s) are altered, however the exchanges as described have been used successfully, but do not exclude the possibility that other changes may be permitted. For example, a tryptophan amino acid residue typically occurs four residues prior to the end of the rabbit heavy chain CDR2 region, whereas in human heavy chain CDR2 this residue is typically a Serine residue. Changing this rabbit tryptophan residue to a the human Serine residue at this position has been demonstrated to have minimal to no effect on the humanized antibody's specificity or affinity, and thus further minimizes the content of rabbit sequence-derived amino acid residues in the humanized sequence.

Example: In FIG. 2, The CDR1 and CDR2 amino acid residues of the human homologous variable heavy chain are replaced with the CDR1 and CDR2 amino acid sequences from the RbtVH rabbit antibody light chain sequence, except for the boxed residue, which is tryptophan in the rabbit sequence (position number 63) and Serine at the same position in the human sequence, and is kept as the human Serine residue. In addition to the CDR1 and CDR2 changes, the final three amino acids of Framework 1 (positions 28-30) as well as the final residue of Framework 2 (position 49) are retained as rabbit amino acid residues instead of human. The resulting humanized sequence is shown below as VHh from residues numbered 1 through 98. Note that the only residues that are different from the 3-64-04 human sequence are underlined, and are thus rabbit-derived amino acid residues. In this example only 15 of the 98 residues are different than the human sequence.

7. After framework 3 of the new hybrid sequence created in Step 6, attach the entire CDR3 of the rabbit heavy chain antibody sequence. The CDR3 sequence can be of various lengths, but is typically 5 to 19 amino acid residues in length. The CDR3 region and the beginning of the following framework 4 region are defined classically and are identifiable by those skilled in the art. Typically the beginning of framework 4, and thus after the end of CDR3 consists of the sequence WGXG . . . (where X is usually Q or P), however some variation may exist in these residues.

Example: The CDR3 of RbtVH (amino acid residues numbered 99-110) is added after the end of framework 3 in the humanized sequence indicated as VHh.

8. The rabbit heavy chain framework 4, which is typically the final 11 amino acid residues of the variable heavy chain and begins as indicated in Step 7 above and typically ends with the amino acid sequence ` . . . TVSS` is replaced with the nearest human heavy chain framework 4 homolog, usually from germline sequence. Frequently this human heavy chain framework 4 is of the sequence `WGQGTLVTVSS`. It is possible that other human heavy chain framework 4 sequences that are not the most homologous or otherwise different may be used without affecting the specificity, affinity and/or immunogenicity of the resulting humanized antibody. This human heavy chain framework 4 sequence is added to the end of the variable heavy chain humanized sequence immediately following the CDR3 sequence from Step 7 above. This is now the end of the variable heavy chain humanized amino acid sequence.

Example: In FIG. 2, framework 4 (FR4) of the RbtVH rabbit heavy chain sequence is shown above a homologous human heavy FR4 sequence. The human FR4 sequence is added to the humanized variable heavy chain sequence (VHh) right after the end of the CD3 region added in Step 7 above.

Methods of Producing Antibodies and Fragments Thereof

The invention is also directed to the production of the antibodies described herein or fragments thereof. Recombinant polypeptides corresponding to the antibodies described herein or fragments thereof are secreted from polyploidal, preferably diploid or tetraploid strains of mating competent yeast. In an exemplary embodiment, the invention is directed to methods for producing these recombinant polypeptides in secreted form for prolonged periods using cultures comprising polyploid yeast, i.e., at least several days to a week, more preferably at least a month r several months, and even more preferably at least 6 months to a year or longer. These polyploid yeast cultures will express at least 10-25 mg/liter of the polypeptide, more preferably at least 50-250 mg/liter, still more preferably at least 500-1000 mg/liter, and most preferably a gram per liter or more of the recombinant polypeptide(s).

In one embodiment or the invention a pair of genetically marked yeast haploid cells are transformed with expression vectors comprising subunits of a desired heteromultimeric protein. One haploid cell comprises a first expression vector, and a second haploid cell comprises a second expression vector. In another embodiment diploid yeast cells will be transformed with one or more expression vectors that provide for the expression and secretion of one or more of the recombinant polypeptides. In still another embodiment a single haploid cell may be transformed with one or more vectors and used to produce a polyploidal yeast by fusion or mating strategies. In yet another embodiment a diploid yeast culture may be transformed with one or more vectors providing for the expression and secretion of a desired polypeptide or polypeptides. These vectors may comprise vectors e.g., linearized plasmids or other linear DNA products that integrate into the yeast cell's genome randomly, through homologous recombination, or using a recombinase such as Cre/Lox or Flp/Frt. Optionally, additional expression vectors may be introduced into the haploid or diploid cells; or the first or second expression vectors may comprise additional coding sequences; for the synthesis of heterotrimers; heterotetramers; etc. The expression levels of the non-identical polypeptides may be individually calibrated, and adjusted through appropriate selection, vector copy number, promoter strength and/or induction and the like. The transformed haploid cells are genetically crossed or fused. The resulting diploid or tetraploid strains are utilized to produce and secrete fully assembled and biologically functional proteins, humanized antibodies described herein or fragments thereof.

The use of diploid or tetraploid cells for protein production provides for unexpected benefits. The cells can be grown for production purposes, i.e. scaled up, and for extended periods of time, in conditions that can be deleterious to the growth of haploid cells, which conditions may include high cell density; growth in minimal media; growth at low temperatures; stable growth in the absence of selective pressure; and which may provide for maintenance of heterologous gene sequence integrity and maintenance of high level expression over time. Without wishing to be bound thereby, the inventors theorize that these benefits may arise, at least in part, from the creation of diploid strains from two distinct parental haploid strains. Such haploid strains can comprise numerous minor autotrophic mutations, which mutations are complemented in the diploid or tetraploid, enabling growth and enhanced production under highly selective conditions.

Transformed mating competent haploid yeast cells provide a genetic method that enables subunit pairing of a desired protein. Haploid yeast strains are transformed with each of two expression vectors, a first vector to direct the synthesis of one polypeptide chain and a second vector to direct the synthesis of a second, non-identical polypeptide chain. The two haploid strains are mated to provide a diploid host where optimized target protein production can be obtained.

Optionally, additional non-identical coding sequence(s) are provided. Such sequences may be present on additional expression vectors or in the first or the second expression vectors. As is known in the art, multiple coding sequences may be independently expressed from individual promoters; or may be coordinately expressed through the inclusion of an "internal ribosome entry site" or "IRES", which is an element that promotes direct internal ribosome entry to the initiation codon, such as ATG, of a cistron (a protein encoding region), thereby leading to the cap-independent translation of the gene. IRES elements functional in yeast are described by Thompson et al. (2001) P.N.A.S. 98:12866-12868.

In one embodiment of the invention, antibody sequences are produced in combination with a secretory J chain, which provides for enhanced stability of IgA (see U.S. Pat. Nos. 5,959,177; and 5,202,422).

In a preferred embodiment the two haploid yeast strains are each auxotrophic, and require supplementation of media for growth of the haploid cells. The pair of auxotrophs are complementary, such that the diploid product will grow in the absence of the supplements required for the haploid cells. Many such genetic markers are known in yeast, including requirements for amino acids (e.g. met, lys, his, arg, etc.), nucleosides (e.g. ura3, ade1, etc.); and the like. Amino acid markers may be preferred for the methods of the invention. Alternatively diploid cells which contain the desired vectors can be selected by other means, e.g., by use of other markers, such as green fluorescent protein, antibiotic resistance genes, various dominant selectable markers, and the like.

Two transformed haploid cells may be genetically crossed and diploid strains arising from this mating event selected by their hybrid nutritional requirements and/or antibiotic resistance spectra. Alternatively, populations of the two transformed haploid strains are spheroplasted and fused, and diploid progeny regenerated and selected. By either method, diploid strains can be identified and selectively grown based on their ability to grow in different media than their parents. For example, the diploid cells may be grown in minimal medium that may include antibiotics. The diploid synthesis strategy has certain advantages. Diploid strains have the potential to produce enhanced levels of heterologous protein through broader complementation to underlying mutations, which may impact the production and/or secretion of recombinant protein. Furthermore, once stable strains have been obtained, any antibiotics used to select those strains do not necessarily need to be continuously present in the growth media.

As noted above, in some embodiments a haploid yeast may be transformed with a single or multiple vectors and mated or fused with a non-transformed cell to produce a diploid cell containing the vector or vectors. In other embodiments, a diploid yeast cell may be transformed with one or more vectors that provide for the expression and secretion of a desired heterologous polypeptide by the diploid yeast cell.

In one embodiment of the invention, two haploid strains are transformed with a library of polypeptides, e.g. a library of antibody heavy or light chains. Transformed haploid cells that synthesize the polypeptides are mated with the complementary haploid cells. The resulting diploid cells are screened for functional protein. The diploid cells provide a means of rapidly, conveniently and inexpensively bringing together a large number of combinations of polypeptides for functional testing. This technology is especially applicable for the generation of heterodimeric protein products, where optimized subunit synthesis levels are critical for functional protein expression and secretion.

In another embodiment of the invention, the expression level ratio of the two subunits is regulated in order to maximize product generation. Heterodimer subunit protein levels have been shown previously to impact the final product generation (Simmons L C, J Immunol Methods. 2002 May 1; 263(1-2):133-47). Regulation can be achieved prior to the mating step by selection for a marker present on the expression vector. By stably increasing the copy number of the vector, the expression level can be increased. In some cases, it may be desirable to increase the level of one chain relative to the other, so as to reach a balanced proportion between the subunits of the polypeptide. Antibiotic resistance markers are useful for this purpose, e.g. Zeocin.TM. (phleomycin) resistance marker, G418 resistance, etc. and provide a means of enrichment for strains that contain multiple integrated copies of an expression vector in a strain by selecting for transformants that are resistant to higher levels of Zeocin.TM. (phleomycin) or G418. The proper ratio, e.g. 1:1; 1:2; etc. of the subunit genes may be important for efficient protein production. Even when the same promoter is used to transcribe both subunits, many other factors contribute to the final level of protein expressed and therefore, it can be useful to increase the number of copies of one encoded gene relative to the other. Alternatively, diploid strains that produce higher levels of a polypeptide, relative to single copy vector strains, are created by mating two haploid strains, both of which have multiple copies of the expression vectors.

Host cells are transformed with the above-described expression vectors, mated to form diploid strains, and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants or amplifying the genes encoding the desired sequences. A number of minimal media suitable for the growth of yeast are known in the art. Any of these media may be supplemented as necessary with salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as phosphate, HEPES), nucleosides (such as adenosine and thymidine), antibiotics, trace elements, and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.

Secreted proteins are recovered from the culture medium. A protease inhibitor, such as phenyl methyl sulfonyl fluoride (PMSF) may be useful to inhibit proteolytic degradation during purification, and antibiotics may be included to prevent the growth of adventitious contaminants. The composition may be concentrated, filtered, dialyzed, etc., using methods known in the art.

The diploid cells of the invention are grown for production purposes. Such production purposes desirably include growth in minimal media, which media lacks pre-formed amino acids and other complex biomolecules, e.g., media comprising ammonia as a nitrogen source, and glucose as an energy and carbon source, and salts as a source of phosphate, calcium and the like. Preferably such production media lacks selective agents such as antibiotics, amino acids, purines, pyrimidines, etc. The diploid cells can be grown to high cell density, for example at least about 50 g/L; more usually at least about 100 g/L; and may be at least about 300, about 400, about 500 g/L or more.

In one embodiment of the invention, the growth of the subject cells for production purposes is performed at low temperatures, which temperatures may be lowered during log phase, during stationary phase, or both. The term "low temperature" refers to temperatures of at least about 15.degree. C., more usually at least about 17.degree. C., and may be about 20.degree. C., and is usually not more than about 25.degree. C., more usually not more than about 22.degree. C. In another embodiment of the invention, the low temperature is usually not more than about 28.degree. C. Growth temperature can impact the production of full-length secreted proteins in production cultures, and decreasing the culture growth temperature can strongly enhance the intact product yield. The decreased temperature appears to assist intracellular trafficking through the folding and post-translational processing pathways used by the host to generate the target product, along with reduction of cellular protease degradation.

The methods of the invention provide for expression of secreted, active protein, preferably a mammalian protein. In one embodiment, secreted, "active antibodies", as used herein, refers to a correctly folded multimer of at least two properly paired chains, which accurately binds to its cognate antigen. Expression levels of active protein are usually at least about 10-50 mg/liter culture, more usually at least about 100 mg/liter, preferably at least about 500 mg/liter, and may be 1000 mg/liter or more.

The methods of the invention can provide for increased stability of the host and heterologous coding sequences during production. The stability is evidenced, for example, by maintenance of high levels of expression of time, where the starting level of expression is decreased by not more than about 20%, usually not more than 10%, and may be decreased by not more than about 5% over about 20 doublings, 50 doublings, 100 doublings, or more.

The strain stability also provides for maintenance of heterologous gene sequence integrity over time, where the sequence of the active coding sequence and requisite transcriptional regulatory elements are maintained in at least about 99% of the diploid cells, usually in at least about 99.9% of the diploid cells, and preferably in at least about 99.99% of the diploid cells over about 20 doublings, 50 doublings, 100 doublings, or more. Preferably, substantially all of the diploid cells maintain the sequence of the active coding sequence and requisite transcriptional regulatory elements.

Other methods of producing antibodies are well known to those of ordinary skill in the art. For example, methods of producing chimeric antibodies are now well known in the art (See, for example, U.S. Pat. No. 4,816,567 to Cabilly et al.; Morrison et al., P.N.A.S. USA, 81:8651-55 (1984); Neuberger, M. S. et al., Nature, 314:268-270 (1985); Boulianne, G. L. et al., Nature, 312:643-46 (1984), the disclosures of each of which are herein incorporated by reference in their entireties).

Likewise, other methods of producing humanized antibodies are now well known in the art (See, for example, U.S. Pat. Nos. 5,530,101, 5,585,089, 5,693,762, and 6,180,370 to Queen et al; U.S. Pat. Nos. 5,225,539 and 6,548,640 to Winter; U.S. Pat. Nos. 6,054,297, 6,407,213 and 6,639,055 to Carter et al; U.S. Pat. No. 6,632,927 to Adair; Jones, P. T. et al, Nature, 321:522-525 (1986); Reichmann, L., et al, Nature, 332:323-327 (1988); Verhoeyen, M, et al. Science, 239:1534-36 (1988), the disclosures of each of which are herein incorporated by reference in their entireties).

Antibody polypeptides of the invention having IL-6 binding specificity may also be produced by constructing, using conventional techniques well known to those of ordinary skill in the art, an expression vector containing an operon and a DNA sequence encoding an antibody heavy chain in which the DNA sequence encoding the CDRs required for antibody specificity is derived from a non-human cell source, preferably a rabbit B-cell source, while the NA sequence encoding the remaining parts of the antibody chain is derived from a human cell source.

A second expression vector is produced using the same conventional means well known to those of ordinary skill in the art, said expression vector containing an operon and a DNA sequence encoding an antibody light chain in which the DNA sequence encoding the CDRs required for antibody specificity is derived from a non-human cell source, preferably a rabbit B-cell source, while the DNA sequence encoding the remaining parts of the antibody chain is derived from a human cell source.

The expression vectors are transfected into a host cell by convention techniques well known to those of ordinary skill in the art to produce a transfected host cell, said transfected host cell cultured by conventional techniques well known to those of ordinary skill in the art to produce said antibody polypeptides.

The host cell may be co-transfected with the two expression vectors described above, the first expression vector containing DNA encoding an operon and a light chain-derived polypeptide and the second vector containing DNA encoding an operon and a heavy chain-derived polypeptide. The two vectors contain different selectable markers, but preferably achieve substantially equal expression of the heavy and light chain polypeptides. Alternatively, a single vector may be used, the vector including DNA encoding both the heavy and light chain polypeptides. The coding sequences for the heavy and light chains may comprise cDNA.

The host cells used to express the antibody polypeptides may be either a bacterial cell such as E. coli, or a eukaryotic cell. In a particularly preferred embodiment of the invention, a mammalian cell of a well-defined type for this purpose, such as a myeloma cell or a Chinese hamster ovary (CHO) cell line may be used.

The general methods by which the vectors may be constructed, transfection methods required to produce the host cell and culturing methods required to produce the antibody polypeptides from said host cells all include conventional techniques. Although preferably the cell line used to produce the antibody is a mammalian cell line, any other suitable cell line, such as a bacterial cell line such as an E. coli-derived bacterial strain, or a yeast cell line, may alternatively be used.

Similarly, once produced the antibody polypeptides may be purified according to standard procedures in the art, such as for example cross-flow filtration, ammonium sulphate precipitation, affinity column chromatography and the like.

The antibody polypeptides described herein may also be used for the design and synthesis of either peptide or non-peptide mimetics that would be useful for the same therapeutic applications as the antibody polypeptides of the invention. See, For example, Saragobi et al, Science, 253:792-795 (1991), the contents of which are herein incorporated by reference in its entirety.

Exemplary Embodiments of Heavy and Light Chain Polypeptides and Polynucleotides

This section recites exemplary embodiments of heavy and light chain polypeptides, as well as exemplary polynucleotides encoding such polypeptides. These exemplary polynucleotides are suitable for expression in the disclosed Pichia expression system.

In certain embodiments, the present invention encompasses polynucleotides having at least 70%, such as at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at feast 98%, at least 99%, or 100% identity to the polynucleotides recited in this application or that encode polypeptides recited in this application, or that hybridize to said polynucleotides under conditions of low-stringency, moderate-stringency, or high-stringency conditions, preferably those that encode polypeptides (e.g. an immunoglobulin heavy and light chain, a single-chain antibody, an antibody fragment, etc.) that have at least one of the biological activities set forth herein, including without limitation thereto specific binding to an IL-6 polypeptide. In another aspect, the invention encompasses a composition comprising such a polynucleotide and/or a polypeptide encoded by such a polynucleotide. In yet another aspect, the invention encompasses a method of treatment of a disease or condition associated with IL-6 or that may be prevented, treated, or ameliorated with an 11-6 antagonist such as Ab1 (e.g. cachexia, cancer fatigue, arthritis, etc.) comprising administration of a composition comprising such a polynuelcotide and/or polypeptide.

In certain preferred embodiments; a heavy chain polypeptide will comprise one or more of the CDR sequences of the heavy and/or light chain polypeptides recited herein (including those contained in the heavy and light chain polypeptides recited herein) and one or more of the framework region polypeptides recited herein, including those depicted in FIGS. 2 and 34-37 or Table 1, and contained in the heavy and light chain polypeptide sequences recited herein. In certain preferred embodiments, a heavy chain polypeptide will comprise one or more Framework 4 region sequences as depicted in FIGS. 2 and 34-37 or Table 1, or as contained in a heavy or light chain polypeptide recited herein.

In certain preferred embodiments, a light chain polypeptide will comprise one or more of the CDR sequences of the heavy and/or light chain polypeptides recited herein (including those contained in the heavy and light chain polypeptides recited herein) and one or more of the Framework region polypeptides recited herein, including those depicted in FIGS. 2 and 34-37 or Table 1, and contained in the heavy and light chain polypeptide sequences recited herein. In certain preferred embodiments, a light chain polypeptide will comprise one or more Framework 4 region sequences as depicted in FIGS. 2 and 34-37 or Table 1, or as contained in a heavy or light chain polypeptide recited herein.

In any of the embodiments recited herein, certain of the sequences recited may be substituted for each other, unless the context indicates otherwise. The recitation that particular sequences may be substituted for one another, where such recitations are made, are understood to be illustrative rather than limiting, and it is also understood that such substitutions are encompassed even when no illustrative examples of substitutions are recited. For example, wherever one or more of the Ab1 light chain polypeptides is recited, e.g. any of SEQ ID NO: 2, 20, 647, 651, 660, 666, 699, 702, 706, or 709, another Ab1 light chain polypeptide may be substituted unless the context indicates otherwise. Similarly, wherever one of the Ab1 heavy chain polypeptides is recited, e.g. any of SEQ 11) NO: 3, 18, 19, 652, 656, 657, 658, 661, 664, 665, 704, or 708, another Ab1 heavy chain polypeptide may be substituted unless the context indicates otherwise. Likewise, wherever one of the Ab1 light chain polynucleotides is recited, e.g. any of SEQ ID NO: 10, 662, 698, 701, or 705, another Ab1 light chain polynucleotide may be substituted unless the context indicates otherwise. Similarly, wherever one of the Ab1 heavy chain polynucleotides is recited, e.g. any of SEQ ID NO: 11, 663, 700, 703, or 707, another Ab1 heavy chain polynucleotide may be substituted unless the context indicates otherwise. Additionally, recitation of any member of any of the following groups is understood to encompass substitution by any other member of the group, as follows: Ab2 Light chain polypeptides (SEQ ID NO: 21 and 667); Ab2 Light chain polynucleotides (SEQ ID NO: 29 and 669); Ab2 Heavy chain polypeptides (SEQ ID NO: 22 and 668); Ab2 Heavy chain polynucleotides (SEQ ID NO: 30 and 670); Ab3 Light chain polypeptides (SEQ ID NO: 37 and 671); Ab3 Light chain polynucleotides (SEQ ID NO: 45 and 673); Ab3 Heavy chain polypeptides (SEQ ID NO: 38 and 672); Ab3 Heavy chain polynucleotides (SEQ ID NO: 46 and 674); Ab4 Light chain polypeptides (SEQ ID NO: 53 and 675); Ab4 Light chain polynucleotides (SEQ ID NO: 61 and 677); Ab4 Heavy chain polypeptides (SEQ ID NO: 54 and 676); Ab4 Heavy chain polynucleotides (SEQ ID NO: 62 and 678); Ab5 Light chain polypeptides (SEQ ID NO: 69 and 679); Ab5 Light chain polynucleotides (SEQ ID NO: 77 and 681); Ab5 Heavy chain polypeptides (SEQ ID NO: 70 and 680); Ab5 Heavy chain polynucleotides (SEQ ID NO: 78 and 682); Ab6 Light chain polypeptides (SEQ ID NO: 85 and 683); Ab6 Light chain polynucleotides (SEQ ID NO: 93 and 685); Ab6 Heavy chain polypeptides (SEQ ID NO: 86 and 684); Ab6 Heavy chain polynucleotides (SEQ ID NO: 94 and 686); Ab7 Light chain polypeptides (SEQ ID NO: 101, 119, 687, 693); Ab7 Light chain polynucleotides (SEQ ID NO: 109 and 689); Ab7 Heavy chain polypeptides (SEQ ID NO: 102, 117, 118, 688, 691, and 692); Ab7 Heavy chain polynucleotides (SEQ ID NO: 110 and 690); Ab1 Light. Chain CDR1 polynucleotides (SEQ ID NO: 12 and 694); Ab1 Light Chain CDR3 polynucleotides (SEQ ID NO: 14 and 695); Ab1 Heavy Chain CDR2 polynucleotides (SEQ ID NO: 16 and 696) and Ab1 Heavy Chain CDR3 polynucleotides (SEQ ID NO: 17 and 697).

Exemplary Ab1-encoding polynucleotide sequences are recited as follows:

TABLE-US-00013 SEQ ID NO: 662: ATGCTACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCT CGCTCCCAGGTGCCAGATGTGCCTATGATATGACCCAGACTCCAGCC TCCTGTGTCTGCAGCTGTGGGAGGCACAGTCACCATCAACTTGCCAG GCCAGTCAGAGCATTAACAATGAATTATCCTGGTATCAGCAGAAACC AGGGCAGCGTCCCAAGCTCCTGATCTATAGGGCATCCACTCTGGCAT CTGGGGTCTCATCGCGGTTCAAAGGCAGTGGATCTGCTCTACAGAGT TCACTCTCACCATCAGCGACCTGGAGTGTGCCGATGCTGCCACTTAC TACTGTCAACAGGGTTATAGTCTGAGGAATATTGATAATGCT SEQ ID NO: 663: ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGG TGTCCAGTGTCAGTCGCTGGAGGAGTCCGGGGGTCGCCTGGTCACGC CTGGGACACCCCTGACACTCACCTGCACAGCCTCTGGATTCTCCCTC AGTAACTACTACGTGACCTGGGTCCGCCAGGCTCCAGGGAAGGGGCT GGAATGGATCGGAATCATTTATGGTAGTGATGAAACGGCCTACGCGA CCTGGGCGATAGGCCGATTCACCATCTCCAAAACCTCGACCACGGTG GATCTGAAAATGACCAGTCTGACAGCCGCGGACACGGCCACCTATTT CTGTGCCAGAGATGATAGTAGTGACTGGGATGCAAAATTTAACTTG SEQ ID NO: 698: GCTATCCAGATGACCCAGTCTCCTTCCTCCCTGTCTGCATCTGTAGG AGACAGAGTCACCATCACTTGCCAGGCCAGTCAGAGCATTAACAATG AGTTATCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTG ATCTATAGGGCATCCACTCTGGCATCTGGGGTCCCATCAACCTTTCA GCGGCAGTGGATCTGGGACAGACTTCACTCTCACCATCAGCAGCCTG CAGCCTGATGATTTTGCAACTTATTACTGCCAACAGGGTTATAGTCT GAGGAACATTGATAATGCTTTCGGCGGAGGGACCAAGGTGGAAATCA AACGTACG SEQ ID NO: 700: GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGG GTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCTCCCTCAGTAACT ACTACGTGACCTTGGGTCCGTCAGGCTCCAGGGAAGGGGCTGGAGTG GGTCGGCATCATCTATGGTAGTGATGAAACCGCCTACGCTACCTCCG CTATAGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACCCTG TATCTTCAAATGAACAGCCTGAGAGCTGAGGACACTGCTGTGTATTA CTGTGCTAGAGATGATAGTAGTGACTGGGATGCAAACTTTCAACTTG TGGGGCCAAGGGACCCTCGTCACCGTCTCGAGC SEQ ID NO: 701: GCTATCCAGATGACCCAGTCTCCTTCCTCCCTGTCTGCATCTGTAGG AGACAGAGTCACCATCACTTGCCAGGCCAGTCAGAGCATTAACAATG AGTTATCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTG ATCTATAGGGCATCCACTCTGGCATCTGGGGTCCCATCAAGGTTCAG CGGCAGTGGATCTGGGACAGACTTCACTCTCACCATCAGCAGCCTGC AGCCTGATGATTTTGCAACTTATTACTGCCAACAGGGTTATAGTCTG AGGAACATTGATAATGCTTTCGGCGGAGGGACCAAGGTGGAAATCAA ACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATG AGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTCTCTCTAATA ACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCC CTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAA GGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAG ACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGC CTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGT SEQ ID NO: 703: GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGG GTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCTCCCTCAGTAACT ACTACGTGACCTGGGTCCGTCAGGCTCCAGGGAAGGGGCTGGAGTGG GTCGGCATCATCTATGGTAGTGATGAAACCGCCTACGCTACCTCCGC TATAGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACCCTGT ATCTTCAAATGAACAGCCTGAGAGCTGAGGACACTGCTGTGTATTAC TGTGCTAGAGATGATAGTAGTGACTGGGATGCAAAGTTCAACTTGTG GGGCCAAGGGACCCTCGTCACCCTTCTCGAGCGCCTCCACCAAGGGC CCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGG CACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGG TGACGGTGTCGTGGAACTCAGGCGCCCTTTACCACTCGGCGTGCACA CCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGC GTGGTGACCGTGCCCTCCAGCAGGTTGGGCACCCAGACCTACATCTG CAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTG AGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCA CCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACC CAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGG TGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTAC GTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGA GCAGTACGCCAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGC ACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAAC AAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGG GCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGG AGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTC TATCCCAGCCTACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGG AGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCC TTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCA GGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACC ACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA SEQ ID NO: 705: ATGAAGTGGGTAACCTTTATTTCCCTTCTGTTTCTCTTTAGCAGCGC TTATTCCGCTATCCAGATGACCCAGTCTCCTTCCTCCCTGTCTGCAT CTGTAGGAGACAGAGTCACCATCACTTGCCAGGCCAGTCAGAGCATT AACAATGAGTTATCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAA GCTCCTGATCTATAGGGCATCCACTCTGGCATCTGGGGTCCCATCAA GGTTCAGCGGCAGTGGATCTGGGACAGACTTCACTCTCACCATCAGC AGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAGGGTTA TAGTCTGAGGAACATTGATAATGCTTTCGGCGGAGGGACCAAGGTGG AAATCAAACGTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCA TCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCT GAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATA ACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGAC AGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAA AGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATC AGGGCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGT SEQ ID NO: 707: ATGAAGTGGGTAACCTTTATTTCCCTTCTGTTTCTCTTTAGCAGCGC TTATTCCGAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGC CTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCTCCCTC AGTAACTACTACGTGACCTGGGTCCGTCAGGCTCCAGGGAAGGGGCT GGAGTGGGTCGGCATCATCTATGGTAGTGATGAAACCGCCTACGCTA CCTCCGCTATAGGCCGATTCACCATCTCCAGAGACAATTCCAAGAAC ACCCTGTATCTTCAAATGAACAGCCTGAGAGCTGAGGACACTGCTGT GTATTACTGTGCTAGAGATGATAGTAGTGACTGGGATGCAAAGTTCA ACTTGTGGGGCCAAGGGACCCTCGTCACCGTCTCGAGCGCCTCCACC AAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTC TGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCG AACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTG CACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAG CAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACA TCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGA GTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCC AGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAA AACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGC GTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTG GTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGG AGGAGCAGTACGCCAGCACGTACCGTGTGCTTCAGCGTCCTCACCGT CCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCT CCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCC AAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCG GGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAG GCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAG CCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGG CTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGC AGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCAC AACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA SEQ ID NO: 720: ATCCAGATGACCCAGTCTCCTTCCTCCCTGTCTGCATCTGTAGGAGA

CAGAGTCACCATCACTTGCCAGGCCAGTCAGAGCATTAACAATGAGT TATCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATC TATAGGGCATCCACTCTGGCATCTGGGGTCCCATCAAGGTTCAGCGG CAGTGGATCTGGGACAGACTTCACTCTTCACCATCAGCAGCCTGCAG CCTGATGATTTTGCAACTTATTACTGCCAACAGGGTTATAGTCTGAG GAACATTGATAATGCT SEQ ID NO: 721: GCCTATGATATGACCCAGACTCCAGCCTCGGTGTCTGCAGCTGTGGG AGGCACAGTCACCATCAAGTGCCAGGCCAGTCAGAGCATTAACAATG AATTATCCTGGTATCAGCAGAAACCAGGGCAGCGTCCCAAGCTCCTG ATCTATAGGGCATCCACTCTGGCATCTGGGGTCTCATCGCGGTTCAA AGGCAGTGGATCTGGGACAGAGTTCACTCTCACCATCAGCGACCTGG AGTGTGCCGATGCTGCCACTTACTACTGTCAACAGGGTTATAGTCTG AGGAATATTGATAATGCTTTCGGCGGAGGGACCGAGGTGGTGGTCAA ACGT SEQ ID NO: 722: ATCCAGATGACCCAGTCTCCTTCCTCCCTGTCTGCATCTGTAGGAGA CAGAGTCACCATCACTTGCCAGGCCAGTCAGAGCATTAACAATGAGT TATCCTGGTATCAGCAGAAACCAGCTGAAAGCCCCTAAGCTCCTGAT CTATAGGGCATCCACTCTGGCATGGGGGTCCCATCAAGGTTCAGCGG CAGTGGATCTCTGGACAGACTTCACTCTCACCATCAGCAGCCTGCAG CCTGATGATTTTGCAACTTATTACTGCCAACAGGGTTATAGTCTGAG GAACATTGATAATGCTTTCGGCGGAGGGACCAAGGTGGAAATCAAAC GTACGGTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAG CAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTT CTATCCCAGAGAGGCCAAAGTACAGTGGAACGTGGATAACGCCCTCC AATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGAC AGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGACTA CGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGA GCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGT SEQ ID NO: 723: GCTATCCAGATGACCCAGTCTCCTTCCTCCCTGTCTGCATCTGTAGG AGACAGAGTCACCATCACTTGCCAGGCCAGTCAGAGCATTAACAATG AGTTATCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTG ATCTATAGGGCATCCACTCTGGCATCTGGGGTCCCATCAAGGTTCAG CGGCAGTGGATCTGGGACAGACTTCACTCTCACCATCAGCAGCCTGC AGCCTGATGATTTTGCAACTTATTACTGCCAACAGGGTTATAGTCTG AGGAACATTGATAATGCTTTCGGCGGAGGGACCAAGGTGGAAATCAA ACGT SEQ ID NO: 724: GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGG GTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCTCCCTCAGTAACT ACTACGTGACCTGGGTCCGTCAGGCTCCAGGGAAGGGGCTGGAGTGG GTCGGCATCATCTATGGTAGTGATGAAACCGCCTACGCTACCTCCGC TATAGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACCCTGT ATCTTCAAATGAACAGCCTGAGAGCTGAGGACACTGCTGTGTATTAC TGTGCTAGAGATGATAGTAGTGACTGGGATGCAAAGTTCAACTTG SEQ ID NO: 725: CAGTCGCTGGAGGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACC CCTGACACTCACCTGCACAGCCTCTGGATTCTCCCTCAGTAACTACT ACGTGACCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAATGGATC GGAATCATTTATGGTAGTGATGAAACGGCCTACGCGACCTGGGCGAT AGGCCGATTCACCATCTCCAAAACCTCGACCACGGTGGATCTGAAAA TGACCAGTCTGACAGCCGCGGACACGGCCACCTATTTCTGTGCCAGA GATGATAGTAGTGACTGGGATGCAAAATTTAACTTGTGGGGCCAAGG CACCCTGGTCACCGTCTCGAGC

Screening Assays

The invention also includes screening assays designed to assist in the identification of diseases and disorders associated with IL-6 in patients exhibiting symptoms of an IL-6 associated disease or disorder.

In one embodiment of the invention, the anti-IL-6 antibodies of the invention, or IL-6 binding fragments or variants thereof, are used to detect the presence of IL-6 in a biological sample obtained from a patient exhibiting symptoms of a disease or disorder associated with IL-6. The presence of IL-6, or elevated levels thereof when compared to pre-disease levels of IL-6 in a comparable biological sample, may be beneficial in diagnosing a disease or disorder associated with IL-6.

Another embodiment of the invention provides a diagnostic or screening assay to assist in diagnosis of diseases or disorders associated with IL-6 in patients exhibiting symptoms of an IL-6 associated disease or disorder identified herein, comprising assaying the level of IL-6 expression in a biological sample from said patient using a post-translationally modified anti-IL-6 antibody or binding fragment or variant thereof. The anti-IL-6 antibody or binding fragment or variant thereof may be post-translationally modified to include a detectable moiety such as set forth previously in the disclosure.

The IL-6 level in the biological sample is determined using a modified anti-IL-6 antibody or binding fragment or variant thereof as set forth herein, and comparing the level of IL-6 in the biological sample against a standard level of IL-6 (e.g., the level in normal biological samples). The skilled clinician would understand that some variability may exist between normal biological samples, and would take that into consideration when evaluating results.

The above-recited assay may also be useful in monitoring a disease or disorder, where the level of IL-6 obtained in a biological sample from a patient believed to have an IL-6 associated disease or disorder is compared with the level of IL-6 in prior biological samples from the same patient, in order to ascertain whether the IL-6 level in said patient has changed with, for example, a treatment regimen.

The invention is also directed to a method of in vivo imaging which detects the presence of cells which express IL-6 comprising administering a diagnostically effective amount of a diagnostic composition. Said in vivo imaging is useful for the detection and imaging of IL-6 expressing tumors or metastases and IL-6 expressing inflammatory sites, for example, and can be used as part of a planning regimen for design of an effective cancer or arthritis treatment protocol. The treatment protocol may include, for example, one or more or radiation, chemotherapy, cytokine therapy, gene therapy, and antibody therapy, as well as an anti-IL-6 antibody or fragment or variant thereof.

A skilled clinician would understand that a biological sample includes, but is not limited to, sera, plasma, urine, saliva, mucous, pleural fluid, synovial fluid and spinal fluid.

Methods of Ameliorating or Reducing Symptoms of or Treating, or Preventing, Diseases and Disorders Associated with, IL-6

In an embodiment of the invention, IL-6 antagonists such as Ab1 described herein are useful for ameliorating or reducing the symptoms of, or treating, or preventing, diseases and disorders associated with IL-6. IL-6 antagonists described herein (e.g., Ab1) can also be administered in a therapeutically effective amount to patients in need of treatment of diseases and disorders associated with IL-6 in the form of a pharmaceutical composition as described in greater detail below.

In one embodiment of the invention, IL-6 antagonists described herein (e.g., Ab1) are useful for ameliorating or reducing the symptoms of, or treating, or preventing, diseases and disorders associated with elevated C-reactive protein (CRP). Such diseases include any disease that exhibits chronic inflammation, e.g., rheumatoid arthritis, juvenile rheumatoid arthritis, psoriasis, psoriatic arthropathy, ankylosing spondylitis, systemic lupus erythematosis, Crohn's disease, ulcerative colitis, pemphigus, dermatomyositis, polymyositis, polymyalgia rheumatica, giant cell arteritis, vasculitis, polyarteritis nodosa, Wegener's granulomatosis, Kawasaki disease, isolated CNS vasculitis, Churg-Strauss arteritis, microscopic polyarteritis, microscopic polyangiitis, Henoch-Schonlein purpura, essential cryoglobulinemic vasculitis, rheumatoid vasculitis, cryoglobulinemia, relapsing polychondritis, Behcet's disease, Takayasu's arteritis, ischemic heart disease, stroke, multiple sclerosis, sepsis, vasculitis secondary to viral infection (e.g., hepatitis B, hepatitis C, HIV, cytomegalovirus, Epstein-Barr virus, Parvo B19 virus, etc.), Buerger's Disease, cancer, advanced cancer, Osteoarthritis, systemic sclerosis, CREST syndrome, Reiter's disease, Paget's disease of bone, Sjogran's syndrome, diabetes type 1, diabetes type 2, familial Mediterranean fever, autoimmune thrombocytopenia, autoimmune hemolytic anemia, autoimmune thyroid diseases, pernicious anemia, vitiligo, alopecia areata, primary biliary cirrhosis, autoimmune chronic active hepatitis, alcoholic cirrhosis, viral hepatitis including hepatitis B and C, other organ specific autoimmune diseases, burns, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, allergic asthma, other allergic conditions or any combination thereof.

In one embodiment of the invention, IL-6 antagonists described herein, such as anti-IL-6 antibodies (e.g., Ab1), variants thereof, or fragments thereof, are useful for ameliorating or reducing the symptoms of, or treating, or preventing, diseases and disorders associated with reduced serum albumin, e.g. rheumatoid arthritis, cancer, advanced cancer, liver disease, renal disease, inflammatory bowel disease, celiac's disease, trauma, burns, other diseases associated with reduced serum albumin, or any combination thereof.

In another embodiment of the invention, IL-6 antagonists described herein are administered to a patient in combination with another active agent. For example, an IL-6 antagonist such as Ab1 may be co-administered with one or more chemotherapy agents, such as VEGF antagonists, EGFR antagonists, platins, taxols, irinotecan, 5-fluorouracil, gemcytabine, leucovorine, steroids, cyclophosphamide, melphalan, vinca alkaloids (e.g., vinblastine, vincristine, vindesine and vinorelbine), mustines, tyrosine kinase inhibitors, radiotherapy, sex hormone antagonists, selective androgen receptor modulators, selective estrogen receptor modulators, PDGF antagonists, TNF antagonists, IL-1 antagonists, interleukins (e.g. IL-12 or IL-2), IL-12R antagonists, Toxin conjugated monoclonal antibodies, tumor antigen specific monoclonal antibodies, Erbitux.TM., Avastin.TM., Pertuzumab, anti-CD20 antibodies, Rituxan.RTM., ocrelizumab, ofatumumab, DXL625, Herceptin.RTM., or any combination thereof.

In one embodiment of the invention, anti-IL-6 antibodies described herein, or fragments or variants thereof, are useful for ameliorating or reducing the symptoms of, or treating, or preventing, diseases and disorders associated with fatigue. Diseases and disorders associated with fatigue include, but are not limited to, general fatigue, exercise-induced fatigue, cancer-related fatigue, fibromyalgia, inflammatory disease-related fatigue and chronic fatigue syndrome. See, for example, Esper D H, et al, The cancer cachexia syndrome: a review of metabolic and clinical manifestations, Nutr Clin Pract., 2005 August; 20 (4):369-76; Vgontzas A N, et al, IL-6 and its circadian secretion in humans, Neuroimmunomodulation, 2005; 12(3):131-40; Robson-Ansley, P J, et al, Acute interleukin-6 administration impairs athletic performance in healthy, trained male runners, Can J Appl Physiol., 2004 August; 29(4):411-8; Shephard R J., Cytokine responses to physical activity, with particular reference to IL-6: sources, actions, and clinical implications, Crit Rev Immunol., 2002; 22(3):165-82; Arnold, M C, et al, Using an interleukin-6 challenge to evaluate neuropsychological performance in chronic fatigue syndrome, Psychol Med., 2002 August; 32(6):1075-89; Kurzrock R., The role of cytokines in cancer-related fatigue, Cancer, 2001 Sep. 15; 92(6 Suppl):1684-8; Nishimoto N, et al., Improvement in Castleman's disease by humanized anti-interleukin-6 receptor antibody therapy, Blood, 2000 Jan. 1; 95 (1):56-61; Vgontzas A N, et al, Circadian interleukin-6 secretion and quantity and depth of sleep, J Clin Endocrinol Metab., 1999 August; 84(8):2603-7; and Spath-Schwalbe E, et al, Acute effects of recombinant human interleukin 6 on endocrine and central nervous sleep functions in healthy men, J Clin Endocrinol Metab., 1998 May; 83(5):1573-9; the disclosures of each of which are herein incorporated by reference in their entireties.

In a preferred embodiment of the invention, anti-IL-6 antibodies described herein, or fragments or variants thereof, are useful for ameliorating or reducing the symptoms of, or treating, or preventing, cachexia. Diseases. and disorders associated with cachexia include, but are not limited to, cancer-related cachexia, cardiac-related cachexia, respiratory-related cachexia, renal-related cachexia and age-related cachexia. See, for example, Barton, B E., Interleukin-6 and new strategies for the treatment of cancer, hyperproliferative diseases and paraneoplastic syndromes, Expert Opin Ther Targets, 2005 August; 9(4):737-52; Zaki M H, et al., CNTO 328, a monoclonal antibody to IL-6, inhibits human tumor-induced cachexia in nude mice, Int J Cancer, 2004 Sep. 10; 111(4):592-5; Trikha M, et al, Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence, Clin Cancer Res., 2003 Oct. 15; 9(13):4653-65; Lelli G, et al, Treatment of the cancer anorexia-cachexia syndrome: a critical reappraisal, J Chemother., 2003 June; 15(3):220-5; Argiles J M, et al, Cytokines in the pathogenesis of cancer cachexia, Curr Opin Clin Nutr Metab Care, 2003 July; 6(4):401-6; Barton B E., IL-6-like cytokines and cancer cachexia: consequences of chronic inflammation, Immunol Res., 2001; 23(1):41-58; Yamashita J I, et al, Medroxyprogesterone acetate and cancer cachexia: interleukin-6 involvement, Breast Cancer, 2000; 7(2):130-5; Yeh S S, et al, Geriatric cachexia: the role of cytokines, Am J Clin Nutr., 1999 August; 70(2):183-97; Strassmann G, et al, Inhibition of experimental cancer cachexia by anti-cytokine and anti-cytokine-receptor therapy, Cytokines Mol Ther., 1995 June; 1(2):107-13; Fujita J, et al, Anti-interleukin-6 receptor antibody prevents muscle atrophy in colon-26 adenocarcinoma-bearing mice with modulation of lysosomal and ATP-ubiquitin-dependent proteolytic pathways, Int J Cancer, 1996 Nov. 27; 68(5):637-43; Tsujinaka T, et al, Interleukin 6 receptor antibody inhibits muscle atrophy and modulates proteolytic systems in interleukin 6 transgenic mice, J Clin Invest., 1996 Jan. 1; 97(1):244-9; Emilie D, et al, Administration of an anti-interleukin-6 monoclonal antibody to patients with acquired immunodeficiency syndrome and lymphoma: effect on lymphoma growth and on B clinical Symptoms, Blood, 1994 Oct. 15; 84 (8):2472-9; and Strassmann G, et al, Evidence for the involvement of interleukin 6 in experimental cancer cachexia, J Clin Invest., 1992 May; 89(5):1681-4; the disclosures of each of which are herein incorporated by reference in their entireties.

In another embodiment of the invention, anti-IL-6 antibodies described herein, or fragments or variants thereof, are useful for ameliorating or reducing the symptoms of, or treating, or preventing, autoimmune diseases and disorders. Diseases and disorders associated with autoimmunity include, but are not limited to, rheumatoid arthritis, systemic lupus erythematosis (SLE), systemic juvenile idiopathic arthritis, psoriasis, psoriatic arthropathy, ankylosing spondylitis, inflammatory bowel disease (IBD), polymyalgia rheumatica, giant cell arteritis, autoimmune vasculitis, graft versus host disease (GVHD), Sjogren's syndrome, adult onset Still's disease. In a preferred embodiment of the invention, humanized anti-IL-6 antibodies described herein, or fragments or variants thereof, are useful for ameliorating or reducing the symptoms of, or treating, or preventing, rheumatoid arthritis and systemic juvenile idiopathic arthritis. See, for example, Nishimoto N., Clinical studies in patients with Castleman's disease, Crohn's disease, and rheumatoid arthritis in Japan, Clin Rev Allergy Immunol., 2005 June; 28(3):221-30; Nishimoto N, et al, Treatment of rheumatoid arthritis with humanized anti-interleukin-6 receptor antibody: a multicenter, double-blind, placebo-controlled trial, Arthritis Rheum., 2004 June; 50(6):1761-9; Choy E., Interleukin 6 receptor as a target for the treatment of rheumatoid arthritis, Ann Rheum his., 2003 November; 62 Suppl 2:ii68-9; Nishimoto N, et al, Toxicity, pharmacokinetics, and dose-finding study of repetitive treatment with the humanized anti-interleukin 6 receptor antibody MRA in rheumatoid arthritis. Phase I/II clinical study, J Rheumatol., 2003 July; 30(7):1426-35; Mihara M, et al, Humanized antibody to human interleukin-6 receptor inhibits the development of collagen arthritis in cynomolgus monkeys, Clin Immunol., 2001 March; 98(3):319-26; Nishimoto N, et al, Anti-interleukin 6 receptor antibody treatment in rheumatic disease, Ann Rheum is., 2000 November; 59 Suppl 1:i21-7; lackey E, et al, Rationale for interleukin-6 blockade in systemic lupus erythematosus, Lupus, 2004; 13(5):339-43; Finck B K, et al, Interleukin 6 promotes murine lupus in NZB/NZW F1 mice, J Clin Invest., 1994 August; 94 (2):585-91; Kitani A, et al, Autostimulatory effects of IL-6 on excessive B cell differentiation in patients with systemic lupus erythematosus: analysis of IL-6 production and IL-6R expression, Clin Exp Immunol., 1992 April; 88(1):75-83; Stuart R A, et al, Elevated serum interleukin-6 levels associated with active disease in systemic connective tissue disorders, Clin Exp Rheumatol., 1995 January-February; 13 (1):17-22; Mihara M, et al, IL-6 receptor blockage inhibits the onset of autoimmune kidney disease in NZB/W F1 mice, Clin Exp Immunol., 1998 June; 12(3):397-402; Woo P, et al, Open label phase 11 trial of single, ascending doses of MRA in Caucasian children with severe systemic juvenile idiopathic arthritis: proof of principle of the efficacy of IL-6 receptor blockade in this type of arthritis and demonstration of prolonged clinical improvement, Arthritis Res Ther., 2005; 7(6):RI281-8. Epub 2005 Sep. 15; Yokota S, et al, Clinical study of tocilizumab in children with systemic-onset juvenile idiopathic arthritis, Clin Rev Allergy Immunol., 2005 June; 28(3):231-8; Yokota S, et al, Therapeutic efficacy of humanized recombinant anti-interleukin-6 receptor antibody in children with systemic-onset juvenile idiopathic arthritis, Arthritis Rheum., 2005 March; 52(3):818-25; de Benedetti F, et al, Targeting the interleukin-6 receptor: a new treatment for systemic juvenile idiopathic arthritis?, Arthritis Rheum., 2005 March; 52(3):687-93; De Benedetti F, et al, Is systemic juvenile rheumatoid arthritis an interleukin 6 mediated disease?, J Rheumatol., 1998 February; 25(2):203-7; Ishihara K, et al, IL-6 in autoimmune disease and chronic inflammatory proliferative disease, Cytokine Growth Factor Rev., 2002 August-October; 13 (4-5):357-68; Gilhar A, et al, In vivo effects of cytokines on psoriatic skin grafted on nude mice involvement of the tumor necrosis factor (TNF) receptor, Clin Exp Immunol., 1996 October; 106(1):134-42; Spadaro A, et al, Interleukin-6 and soluble interleukin-2 receptor in psoriatic arthritis: correlations with clinical and laboratory parameters, Clin Exp Rheumatol., 1996 July-August; 14 (4):413-6; Ameglio F, et al, Interleukin-6 and tumor necrosis factor levels decrease in the suction blister fluids of psoriatic patients during effective therapy, Dermatology, 1994; 189(4):359-63; Wendling D, et al, Combination therapy of anti-CD4 and anti-IL-6 monoclonal antibodies in a case of severe spondylarthropathy, Br J Rheumatol., 1996 December; 35(12):1330; Gratacos J, et al, Serum cytokines (IL-6, TNF-alpha, IL-1 beta and IFN-gamma) in ankylosing spondylitis: a close correlation between scrum IL-6 and disease activity and severity, Br J Rheumatol., 1994 October; 33(10):927-31; Ito H., Treatment of Crohn's disease with anti-IL-6 receptor antibody, J Gastroenterol., 2005 March; 40 Suppl 16:32-4; Ito H, et al, A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn's disease, Gastroenterology, 2004 April; 126(4):989-96; discussion 947; Ito H., IL-6 and Crohn's disease, Curr Drug Targets Inflamm Allergy, 2003 June; 2(2):12530; Ito H, et al, Anti-IL-6 receptor monoclonal antibody inhibits leukocyte recruitment and promotes T-cell apoptosis in a murine model of Crohn's disease, J Gastroenterol., 2002 November; 37 Suppl 14:56-61; Ito H., Anti-interleukin-6 therapy for Crohn's disease, Curr Pharm Des., 2003; 9(4):295-305; Salvarani C, et al, Acute-phase reactants and the risk of relapse/recurrence in polymyalgia rheumatica: a prospective follow-up study, Arthritis Rheum., 2005 Feb. 15; 53(1):33-8; Roche N E, et al, Correlation of interleukin-6 production and disease activity in polymyalgia rheumatica and giant cell arteritis, Arthritis Rheum., 1993 September; 36(9):1286-94; Gupta M, et al, Cytokine modulation with immune gamma-globulin in peripheral blood of normal children and its implications in Kawasaki disease treatment, J Clin Immunol., 2001 May; 21(3):193-9; Noris M, et al, Interleukin-6 and RANTES in Takayasu arteritis: a guide for therapeutic decisions?, Circulation, 1999 Jul. 6; 100(1):55-60; Besbas N, et al, The role of cytokines in Hormel) Schonlein purpura, Stand J Rheumatol., 1997; 26(6):456-60; Hirohata S, et al, Cerebrospinal fluid interleukin-6 in progressive Neuro-Behcet'S syndrome, Clin Immunol Immunopathol., 1997 January; 82(1):12-7; Yamakawa Y, et al, interleukin-6 (IL-6) in patients with Behcet's disease, J Dermatol Sci., 1996 March; 11(3):189-95; Kim D S., Serum interleukin-6 in Kawasaki disease, Yonsei Med J., 1992 June; 33(2):183-8; Lange, A., et al, Cytokines, adhesion molecules (E-selectin and VCAM-1) and graft-versus-host disease, Arch. Immunol Ther Exp., 1995, 43(2):99-105; Tanaka, J., et al, Cytokine gene expression after allogeneic bone marrow transplantation, Leuk. Lymphoma, 1995 16(5-6):413-418; Dickenson, A M, et al, Predicting outcome in hematological stem cell transplantation, Arch Immunol Ther Exp., 2002 50(6):371-8; Zeiser, R, et al, Immunopathogenesis of acute graft-versus-host disease: implications for novel preventive and therapeutic strategies, Ann Hematol., 2004 83(9):551-65; Dickinson, A M, et al, Genetic polymorphisms predicting the outcome of bone marrow transplants, Br. J Haematol., 2004 127(5):479-90; and Scheinberg M A, et al., Interleukin 6: a possible marker of disease activity in adult onset Still's disease, Clin Exp Rheumatol., 1996 November-December; 14 (6):653-5, the disclosures of each of which are herein incorporated by reference in their entireties.

In another embodiment of the invention, anti-IL-6 antibodies described herein, or fragments or variants thereof, are useful for ameliorating or reducing the symptoms of, or treating, or preventing, diseases and disorders associated with the skeletal system. Diseases and disorders associated with the skeletal system include, but are not limited to, osteoarthritis, osteoporosis and Paget's disease of bone. In a preferred embodiment of the invention, humanized anti-IL-6 antibodies described herein, or fragments or variants thereof, are useful for ameliorating or reducing the symptoms of, or treating, or preventing, osteoarthritis. See, for example, Malemud C J., Cytokines as therapeutic targets for osteoarthritis, BioDrugs, 2004; 18(1):23-35; Westacott C I, et al, Cytokines in osteoarthritis: mediators or markers of joint destruction?, Semin Arthritis Rheum., 1996 February; 25(4):254-72; Sugiyama T., Involvement of interleukin-6 and prostaglandin E2 in particular osteoporosis of postmenopausal women with rheumatoid arthritis, J Bone Miner Metab., 2001; 19(2):89-96; Abrahamsen B, et al, Cytokines and bone loss in a 5-year longitudinal study--hormone replacement therapy suppresses serum soluble interleukin-6 receptor and increases interleukin-1-receptor antagonist: the Danish Osteoporosis Prevention Study, J Bone Miner Res., 2000 August; 15(8):1545-54; Straub R H, et al, Hormone replacement therapy and interrelation between serum interleukin-6 and body mass index in postmenopausal women: a population-based study, J Clin Endocrinol Metab., 2000 March; 85(3):1340-4; Manolagas S C, The role of IL-6 type cytokines and their receptors in bone, Ann N Y Acad Sci., 1998 May 1; 840:194-204; Ershler W B, et al, Immunologic aspects of osteoporosis, Dev Comp Immunol., 1997 November-December; 21(6):487-99; Jilka R L, et al, Increased osteoclast development after estrogen loss: mediation by interleukin-6, Science, 1992 Jul. 3; 257(5060:88-91; Kallen K J, et al, New developments in IL-6 dependent biology and therapy: where do we stand and what are the options?, Expert Opin Investig Drugs, 1999 September; 8(9):1327-49; Neale S D, et al, The influence of scrum cytokines and growth factors on osteoclast formation in Paget's disease, QJM, 2002 April; 95 (4):233-40; Roodman G D, Osteoclast function In Paget's disease and multiple myeloma, Bone, 1995 August; 17(2 Suppl):57S-61S; Hoyland J A, et al, Interleukin-6, IL-6 receptor, and IL-6 nuclear factor gene expression in Paget's disease, J Bone Miner Res., 1994 January; 9(1):75-80; and Roodman G D, et al, Interleukin 6. A potential autocrine/paracrine factor in Paget's disease of bone, J Clin Invest., 1992 January; 89(1):46-52; the disclosures of each of which are herein incorporated by reference in their entireties.

In another embodiment of the invention, anti-IL-6 antibodies described herein, or fragments or variants thereof, are useful for ameliorating or reducing the symptoms of, or treating, or preventing, diseases and disorders associated with cancer. Diseases and disorders associated with cancer include, but are not limited to, Acanthoma, Acinic cell carcinoma, Acoustic neuroma, Acral lentiginous melanoma, Acrospiroma, Acute eosinophilic leukemia, Acute lymphoblastic leukemia, Acute megakaryoblastic leukemia, Acute monocytic leukemia, Acute myeloblastic leukemia with maturation, Acute myeloid dendritic cell leukemia, Acute myeloid leukemia, Acute promyelocytic leukemia, Adamantinoma, Adenocarcinoma, Adenoid cystic carcinoma, Adenoma, Adenomatoid odontogenic tumor, Adrenocortical carcinoma, Adult T-cell leukemia, Aggressive NK-cell leukemia, AIDS-Related Cancers, AIDS-related lymphoma, Alveolar soft part sarcoma, Ameloblastic fibroma, Anal cancer, Anaplastic large cell lymphoma, Anaplastic thyroid cancer, Angioimmunoblastic T-cell lymphoma, Angiomyolipoma, Angiosarcoma, Appendix cancer, Astrocytoma, Atypical teratoid rhabdoid tumor, Basal cell carcinoma, Basal-like carcinoma, B-cell leukemia, B-cell lymphoma, Bellini duct carcinoma, Biliary tract cancer, Bladder cancer, Blastoma, Bone Cancer, Bone tumor, Brain Stem Glioma, Brain Tumor, Breast Cancer, Brenner tumor, Bronchial Tumor, Bronchioloalveolar carcinoma, Brown tumor, Burkitt's lymphoma, Cancer of Unknown Primary Site, Carcinoid Tumor, Carcinoma, Carcinoma in situ, Carcinoma of the penis, Carcinoma of Unknown Primary Site, Carcinosarcoma, Castleman's Disease, Central Nervous System Embryonal Tumor, Cerebellar Astrocytoma, Cerebral Astrocytoma, Cervical Cancer, Cholangiocarcinoma, Chondroma, Chondrosarcoma, Chordoma, Choriocarcinoma, Choroid plexus papilloma, Chronic Lymphocytic Leukemia, Chronic monocytic leukemia, Chronic myelogenous leukemia, Chronic Myeloproliferative Disorder, Chronic neutrophilic leukemia, Clear-cell tumor, Colon Cancer, Colorectal cancer, Craniopharyngioma, Cutaneous T-cell lymphoma., Degos disease, Dermatofibrosarcoma protuberans, Dermoid cyst, Desmoplastic small round cell tumor, Diffuse Large B cell lymphoma, Dysembryoplastic neuroepithelial tumor, Embryonal carcinoma, Endodermal sinus tumor, Endometrial cancer, Endometrial Uterine Cancer, Endometrioid tumor, Enteropathy-associated T-cell lymphoma, Ependymoblastoma, Ependymoma, Epithelioid sarcoma, Erythroleukemia, Esophageal cancer, Esthesioneuroblastoma, Ewing Family of Tumor, Ewing Family Sarcoma, Ewing's sarcoma, Extracranial Germ Cell Tumor, Extragonadal Germ Cell Tumor, Extrahepatic Bile Duct Cancer, Extramammary Paget's disease, Fallopian tube cancer, Fetus in fetu, Fibroma, Fibrosarcoma, Follicular lymphoma, Follicular thyroid cancer, Gallbladder Cancer, Gallbladder cancer, Ganglioglioma, Ganglioneuroma, Gastric Cancer, Gastric lymphoma, Gastrointestinal cancer, Gastrointestinal Carcinoid Tumor, Gastrointestinal Stromal Tumor, Gastrointestinal stromal tumor, Germ cell tumor, Germinorna, Gestational choriocarcinoma, Gestational Trophoblastic Tumor, Giant cell tumor of bone, Glioblastoma multiforme, Glioma, Gliomatosis cerebri, Glomus tumor, Glucagonoma, Gonadoblastoma, Granulosa cell tumor, Hairy Cell Leukemia, Hairy cell leukemia, Head and Neck Cancer, Head and neck cancer. Heart cancer, Hemangioblastoma, Hemangiopericytoma, Hemangiosarcoma, Hematological malignancy, Hepatocellular carcinoma, Hepatosplenic T-cell lymphoma, Hereditary breast-ovarian cancer syndrome, Hodgkin Lymphoma, Hodgkin's lymphoma, Hypopharyngeal Cancer, Hypothalamic Glioma, Inflammatory breast cancer, Intraocular Melanoma, Islet cell carcinoma, Islet Cell Tumor, Juvenile myelomonocytic leukemia, Kaposi Sarcoma, Kaposi's sarcoma, Kidney Cancer, Klatskin tumor, Krukenberg tumor, Laryngeal Cancer, Laryngeal cancer, Lentigo maligna melanoma, Leukemia, Leukemia, Lip and Oral Cavity Cancer, Liposarcoma, Lung cancer, Lutcoma, Lymphangioma, Lymphangiosarcoma, Lymphoepithelioma, Lymphoid leukemia, Lymphoma, Macroglobulinemia, Malignant Fibrous Histiocytoma, Malignant fibrous histiocytoma, Malignant Fibrous Histiocytoma of Bone, Malignant Glioma, Malignant Mesothelioma, Malignant peripheral nerve sheath tumor, Malignant rhabdoid tumor, Malignant triton tumor, MALT lymphoma. Mantle cell lymphoma, Mast cell leukemia, Mediastinal germ cell tumor, Mediastinal tumor, Medullary thyroid cancer, Medulloblastoma, Medulloblastoma, Medulloepithelioma, Melanoma, Melanoma, Meningioma, Merkel Cell Carcinoma, Mesothelioma, Mesothelioma, Metastatic Squamous Neck Cancer with Occult Primary, Metastatic urothelial carcinoma, Mixed Mullerian tumor, Monocytic leukemia, Mouth Cancer, Mucinous tumor, Multicentric Castleman's disease, Multiple Endocrine Neoplasia Syndrome, Multiple Myeloma, Multiple myeloma., Mycosis Fungoides, Mycosis fungoides, Myelodysplastic Disease, Myelodysplastic Syndromes, Myeloid leukemia, Myeloid sarcoma, Myeloproliferative Disease, Myxoma, Nasal Cavity Cancer, Nasopharyngeal Cancer, Nasopharyngeal carcinoma, Neoplasm, Neurinoma, Neuroblastoma, Neuroblastoma, Neurofibroma, Neuroma, Nodular melanoma, Non-Hodgkin Lymphoma, Non-Hodgkin lymphoma, Nonmelanoma Skin Cancer, Non-Small Cell Lung Cancer, Ocular oncology, Oligoastrocytoma, Oligodendroglioma, Oncocytoma, Optic nerve sheath meningioma, Oral Cancer, Oral cancer, Oropharyngeal Cancer, Osteosarcoma, Osteosarcoma, Ovarian Cancer, Ovarian cancer, Ovarian Epithelial Cancer, Ovarian Germ Cell Tumor, Ovarian Low Malignant Potential Tumor, Paget's disease of the breast, Pancoast tumor, Pancreatic Cancer, Pancreatic cancer, Papillary thyroid cancer, Papillomatosis, Paraganglioma, Paranasal Sinus Cancer, Parathyroid Cancer, Penile Cancer, Perivascular epithelioid cell tumor, Pharyngeal Cancer, Pheochromocytoma, Pineal Parenchymal Tumor of Intermediate Differentiation, Pineoblastoma, Pituicytoma, Pituitary adenoma, Pituitary tumor, Plasma Cell Neoplasm, Pleuropulmonary blastoma, Polyembryoma, Precursor T-lymphoblastic lymphoma, Primary central nervous system lymphoma, Primary effusion lymphoma, Primary Hepatocellular Cancer, Primary Liver Cancer, Primary peritoneal cancer, Primitive neuroectodermal tumor, Prostate cancer, Pseudomyxoma peritonei, Rectal Cancer, Renal cell carcinoma, Respiratory Tract Carcinoma Involving the NUT Gene on Chromosome 15, Retinoblastoma, Rhabdomyoma, Rhabdomyosarcoma, Richter's transformation, Sacrococcygeal teratoma, Salivary Gland Cancer, Sarcoma, Schwannomatosis, Sebaceous gland carcinoma, Secondary neoplasm, Seminoma, Serous tumor, Sertoli-Leydig cell tumor, Sex cord-stromal tumor, Sezary Syndrome, Signet ring cell carcinoma, Skin Cancer, Small blue round cell tumor, Small cell carcinoma, Small Cell Lung Cancer, Small cell lymphoma, Small intestine cancer, Soft tissue sarcoma, Somatostatinoma, Soot Wart, Spinal Cord Tumor, Spinal tumor, Splenic marginal zone lymphoma, Squamous cell carcinoma, Stomach cancer, Superficial spreading melanoma, Supratentorial Primitive Neuroectodermal Tumor, Surface epithelial-stromal tumor, Synovial sarcoma, T-cell acute lymphoblastic leukemia, T-cell large granular lymphocyte leukemia, T-cell leukemia, T-cell lymphoma, T-cell prolymphocytic leukemia, Teratoma, Terminal lymphatic cancer, Testicular cancer, Thecoma, Throat Cancer, Thymic Carcinoma, Thymoma, Thyroid cancer, Transitional Cell Cancer of Renal Pelvis and Ureter, Transitional cell carcinoma, Urachal cancer, Urethral cancer, Urogenital neoplasm, Uterine sarcoma, Uveal melanoma, Vaginal Cancer, Verner Morrison syndrome, Verrucous carcinoma, Visual Pathway Glioma, Vulvar Cancer, Waldenstrom's macroglobulinemia, Warthin's tumor, Wilms' tumor, or any combination thereof, as well as drug resistance in cancer chemotherapy and cancer chemotherapy toxicity. See, for example, Hirata T, et al, Humanized anti-interleukin-6 receptor monoclonal antibody induced apoptosis of fresh and cloned human myeloma cells in vitro, Leuk Res., 2003 April; 27(4):343-9, Bataille R, et al, Biologic effects of anti-interleukin-6 murine monoclonal antibody in advanced multiple myeloma, Blood, 1995 Jul. 15; 86 (2):685-91; Goto H, et al, Mouse anti-human interleukin-6 receptor monoclonal antibody inhibits proliferation of fresh human myeloma cells in vitro, Jpn J Cancer Res., 1994 September; 85(9):958-65; Klein B, et al, Murine anti-interleukin-6 monoclonal antibody therapy for a patient with plasma cell leukemia, Blood, 1991 Sep. 1; 78(5):1198-204; Mauray S, et al, Epstein-Barr virus-dependent lymphoproliferative disease: critical role of IL-6, Eur J Immunol., 2000 July; 30(7):2065-73; Tsunenari T, et al, New xenograft model of multiple myeloma and efficacy of a humanized antibody against human interleukin-6 receptor, Blood, 1997 Sep. 15; 90(6):2437-44; Emilie D, et al, Interleukin-6 production in high-grade B lymphomas: correlation with the presence of malignant immunoblasts in acquired immunodeficiency syndrome and in human immunodeficiency virus-seronegative patients, Blood, 1992 Jul. 15; 80(2):498-504; Emilie D, et al, Administration of an anti-interleukin-6 monoclonal antibody to patients with acquired immunodeficiency syndrome and lymphoma: effect on lymphoma growth and on B clinical Symptoms, Blood, 1994 Oct. 15; 84(8):2472-9; Smith P C, et al, Anti-interleukin-6 monoclonal antibody induces regression of human prostate cancer xenografts in nude mice, Prostate, 2001 Jun. 15; 48(I):47-53; Smith P C, et al, Interleukin-6 and prostate cancer progression, Cytokine Growth Factor Rev., 2001 March; 12(1):33-40; Chung T D, et al, Characterization of the role of IL-6 in the progression of prostate cancer, Prostate, 1999 Feb. 15; 38(3):199-207; Okamoto M, et al, Interleukin-6 as a paracrine and autocrine growth factor in human prostatic carcinoma cells in vitro, Cancer Res., 1997 Jan. 1; 57(1):141-6; Reittie J E, et al, Interleukin-6 inhibits apoptosis and tumor necrosis factor induced proliferation of B-chronic lymphocytic leukemia, Leuk Lymphoma, 1996 June; 22(1-2):83-90, follow 186, color plate VI; Sugiyama H, et al, The expression of IL-6 and its related genes in acute leukemia, Leuk Lymphoma, 1996 March; 21(1-2):49-52; Bataille R, et al, Effects of an anti-interleukin-6 (IL-6) murine monoclonal antibody in a patient with acute monoblastic leukemia, Med Oncol Tumor Pharmacother., 1993; 10(4):185-8; Kedar I, et al, Thalidomide reduces scrum C-reactive protein and interleukin-6 and induces response to IL-2 in a fraction of metastatic renal cell cancer patients who failed IL-2-based therapy, Int J Cancer, 2004 Jun. 10; 110(2):260-5; Angelo L S, Talpaz M, Kurzrock R, Autocrine interleukin-6 production in renal cell carcinoma: evidence for the involvement of p53, Cancer Res., 2002 Feb. 1; 62(3):932-40; Nishimoto N, Humanized anti-interleukin-6 receptor antibody treatment of multicentric Castleman disease, Blood, 2005 Oct. 15; 106(8):2627-32, Epub 2005 Jul. 5; Katsume A, et al, Anti-interleukin 6 (IL-6) receptor antibody suppresses Castleman's disease like symptoms emerged in IL-6 transgenic mice, Cytokine, 2002 Dec. 21; 20(6):304-11; Nishimoto N, et al, Improvement in Castleman's disease by humanized anti-interleukin-6 receptor antibody therapy, Blood, 2000 Jan. 1; 95(1):56-61; Screpanti I, Inactivation of the IL-6 gene prevents development of multicentric Castleman's disease in C/EBP beta-deficient mice, J Exp Med., 1996 Oct. 1; 184(4); 1561-6; Hsu S M, et al, Expression of interleukin-6 in Castleman's disease, Hum Pathol., 1993 August; 24(8):833-9; Yoshizaki K, et al, Pathogenic significance of interleukin-6 (II. 6/BSF-2) in Castleman's disease, Blood, 1989 September; 74(4):1360-7; Nilsson M B, et al, Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine, Cancer Res., 2005 Dec. 1; 65(23):10794-800; Toutirais O, et al, Constitutive expression of TGF-beta1, interleukin-6 and interleukin-8 by tumor cells as a major component of immune escape in human ovarian carcinoma, Eur Cytokine Netw., 2003 October-December; 14(4):246-55; Obata N H, et al, Effects of interleukin 6 on in vitro cell attachment, migration and invasion of human ovarian carcinoma, Anticancer Res., 1997 January-February; 17 (1A):337-42; Dedoussis G V, et al, Endogenous interleukin 6 conveys resistance to cis-diamminedichloroplatinum-mediated apoptosis of the K562 human leukemic cell line, Exp Cell Res., 1999 Jun. 15; 249(2):269-78; Borsellino N, et al, Blocking signaling through the Gp130 receptor chain by interleukin-6 and oncostatin M inhibits PC-3 cell growth and sensitizes the tumor cells to etoposide and cisplatin-mediated cytotoxicity, Cancer, 1999 Jan. 1; 85(0:134-44; Borsellino N, et al, Endogenous interleukin 6 is a resistance factor for cis-diamminedichloroplatinum and etoposide-mediated cytotoxicity of human prostate carcinoma cell lines, Cancer Res., 1995 Oct. 15; 55(20):4633-9; Mizutani Y, et al, Sensitization of human renal cell carcinoma cells to cis-diamminedichloroplatinum(II) by anti-interleukin 6 monoclonal antibody or anti-interleukin 6 receptor monoclonal antibody; Cancer Res., 1995 Feb. 1; 55(3):590-6; Yusuf R Z, et al, Paclitaxel resistance: molecular mechanisms and pharmacologic manipulation, Curr Cancer Drug Targets, 2003 February; 3(1):1-19; Duan Z, et al, Overexpression of IL-6 but not IL-8 increases paclitaxel resistance of U-20S human osteosarcoma cells, Cytokine, 2002 Mar. 7; 17(5):234-42; Conze D, et al, Autocrine production of interleukin 6 causes multidrug resistance in breast cancer cells, Cancer Res., 2001 Dec. 15; 61(24):8851-8; Rossi J F, et al, Optimizing the use of anti-interleukin-6 monoclonal antibody with dexamethasone and 140 mg/m.sup.2 of melphalan in multiple myeloma: results of a pilot study including biological aspects, Bone Marrow Transplant, 2005 November; 36(9):771-9; and Tonini G, et al, Oxaliplatin may induce cytokine-release syndrome in colorectal cancer patients, J Biol Regul Homeost Agents, 2002 April-June; 16 (2):105-9; the disclosures of each of which are herein incorporated by reference in their entireties.

In another embodiment of the invention, anti-IL-6 antibodies described herein, or fragments or variants thereof, are useful for ameliorating or reducing the symptoms of, or treating, or preventing, ischemic heart disease, atherosclerosis, obesity, diabetes, asthma, multiple sclerosis, Alzheimer's disease, cerebrovascular disease, fever, acute phase response, allergies, anemia, anemia of inflammation (anemia of chronic disease), hypertension, depression, depression associated with a chronic illness, thrombosis, thrombocytosis, acute heart failure, metabolic syndrome, miscarriage, obesity, chronic prostatitis, glomerulonephritis, pelvic inflammatory disease, reperfusion injury, and transplant rejection. See, for example, Tzoulaki I, et al, C-reactive protein, interleukin-6, and soluble adhesion molecules as predictors of progressive peripheral atherosclerosis in the general population: Edinburgh Artery Study, Circulation, 2005 Aug. 16; 112(7):976-83, Epub 2005 Aug. 8; Rattazzi M, et al., C-reactive protein and interleukin-6 in vascular disease: culprits or passive bystanders?, J Hypertens., 2003 October; 21(10):1787-803; Ito T, et al, HMG-CoA reductase inhibitors reduce interleukin-6 synthesis in human vascular smooth muscle cells, Cardiovasc Drugs Ther., 2002 March; 16(2):121-6; Stenvinkel P, et al, Mortality, malnutrition, and atherosclerosis in ESRD: what is the role of interleukin-6?, Kidney Int Suppl., 2002 May; (80):103-8; Yudkin J S, et al, Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link?, Atherosclerosis, 2000 February; 148(2):209-14; Huber S A, et al, Interleukin-6 exacerbates early atherosclerosis in mice, Arterioscler Thromb Vasc Biol., 1999 October; 19(10):2364-7; Kado S, et al, Circulating levels of interleukin-6, its soluble receptor and interleukin-6/interleukin-6 receptor complexes in patients with type 2 diabetes mellitus, Acta Diabetol., 1999 June; 36(1-2):67-72; Sukovich D A, et al, Expression of interleukin-6 in atherosclerotic lesions of male ApoE-knockout mice: inhibition by 17beta-estradiol, Arterioscler Thromb Vase Biol., 1998 September; 8(9):1498-505; Klover P J, et al, interleukin-6 depletion selectively improves hepatic insulin action in obesity, Endocrinology, 2005 August; 146(8):3417-27, Epub 2005 Apr. 21; Lee Y H, et al, The evolving role of inflammation in obesity and the metabolic syndrome, Curr Diab Rep., 2005 February; 5(1):70-5; Diamant M, et al, The association between abdominal visceral fat and carotid stiffness is mediated by circulating inflammatory markers in uncomplicated type 2 diabetes, J Clin Endocrinol Metab., 2005 March; 90(3):1495-501, Epub 2004 Dec. 21; Bray G A, Medical consequences of obesity, J Clin Endocrinol Metab., 2004 June; 89(6):2583 9; Klover P J, et al, Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice, Diabetes, 2003 November; 52 (11):2784-9; Yudkin J S, et al, Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link?, Atherosclerosis, 2000 February; 148(2):209-14; Doganci A, et al, Pathological role of IL-6 in the experimental allergic bronchial asthma in mice, Clin Rev Allergy Immunol., 2005 June; 28(3):257-70; Doganci A, et al, The IL-6R alpha chain controls lung CD4|CD25| Treg development and function during allergic airway inflammation in viva, J Clin Invest., 2005 February; 115(2):313 25, (Erratum in: 3 Clin Invest., 2005 May; 115(5):1388, Lehr, Hans A [added]); Stelmasiak Z, et al, II. 6 and sIL-6R concentration in the cerebrospinal fluid and serum of MS patients, Med Sci Monit., 2001 September-October; 7(5):914-8; Tilgner J, et al, Continuous interleukin-6 application in vivo via macroencapsulation of interleukin-6-expressing COS-7 cells induces massive gliosis, Glia, 2001 September; 35(3):234-45, Brunello A G, et al, Astrocytic alterations in interleukin-6 Soluble interleukin-6 receptor alpha double-transgenic mice, Am J Pathol., 2000 November; 157(5):1485-93; Hampel H, et al, Pattern of interleukin-6 receptor complex immunoreactivity between cortical regions of rapid autopsy normal and Alzheimer's disease brain, Eur Arch Psychiatry Clin Neurosci., 2005 August; 255(4):269-78, Epub 2004 Nov. 26; Cacquevel M, et al, Cytokines in neuroinflammation and Alzheimer's disease, Curr Drug Targets, 2004 August; 5(6):529-34; Quintanilla, R A, et al, Interleukin 6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway, Exp Cell Res., 2004 Apr. 15; 295 (1):245-57; Gadient R A, et al., Interleukin-6 (IL-6)--a molecule with both beneficial and destructive potentials, Prog Neurobiol., 1997 August; 52(5):379-90; Hull M, et al, occurrence of interleukin-6 in cortical plaques of Alzheimer's disease patients may precede transformation of diffuse into neuritic plaques, Ann N Y Acad Sci., 1996 Jan. 17; 777:205-12; Rallidis L S, et al, Inflammatory markers and in-hospital mortality in acute ischaemic stroke, Atherosclerosis, 2005 Dec. 30; Emsley H C, et al, Interleukin-6 and acute ischaemic stroke, Acta Neurol Stand., 2005 October; 112(4):273-4; Smith C J, et al, Peak plasma interleukin-6 and other peripheral markers of inflammation in the first week of ischaemic stroke correlate with brain infarct volume, stroke severity and long-term outcome, BMC Neurol., 2004 Jan. 15; 4:2; Vila N, et al., Proinflammatory cytokines and early neurological worsening in ischemic stroke, Stroke, 2000 October; 31(10):2325-9; and Tarkowski E, et al, Early intrathecal production of interleukin-6 predicts the size of brain lesion in stroke, Stroke, 1995 August; 26(8):1393-8; the disclosures of each of which are herein incorporated by reference in their entireties.

In another embodiment of the invention, anti-IL-6 antibodies described herein, or fragments or variants thereof, are useful for ameliorating or reducing the symptoms of, or treating, or preventing, diseases and disorders associated with cytokine storm. Diseases and disorders associated with cytokine storm include, but are not limited to, graft versus host disease (GVHD), avian influenza, smallpox, pandemic influenza, adult respiratory distress syndrome (ARDS), severe acute respiratory syndrome (SARS), sepsis, and systemic inflammatory response syndrome (SIRS). See, for example, Cecil, R. L., Goldman, L., & Bennett, J. C. (2000). Cecil textbook of medicine. Philadelphia: W.B. Saunders; Ferrara J L, et al., Cytokine storm of graft-versus-host disease: a critical effector role for interleukin-1, Transplant Proc. 1993 February; 25(1 Pt 2):1216-7; Osterholm M T, Preparing for the Next Pandemic, N Engl J Med. 2005 May 5; 352(18):1839-42; Huang K J, et al., An interferon-gamma-related cytokine storm in SARS patients, J Med Virol. 2005 February; 75(2):1.85-94; and Cheung C Y, et al., Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease? Lancet. 2002 Dec. 7; 360(9348):1831-7.

In another embodiment of the invention, anti-IL-6 antibodies described herein, or fragments or variants thereof, are useful as a wakefulness aid.

Administration

In one embodiment of the invention, the anti-IL-6 antibodies described herein, or IL-6 binding fragments or variants thereof, as well as combinations of said antibody fragments or variants, are administered to a subject at a concentration of between about 0.1 and 20 mg/kg, such as about 0.4 mg/kg, about 0.8 mg/kg, about 1.6 mg/kg, or about 4 mg/kg, of body weight of recipient subject. In a preferred embodiment of the invention, the anti-IL-6 antibodies described herein, or IL-6 binding fragments or variants thereof, as well as combinations of said antibody fragments or variants, are administered to a subject at a concentration of about 0.4 mg/kg of body weight of recipient subject. In a preferred embodiment of the invention, the anti-IL-6 antibodies described herein, or IL-6 binding fragments or variants thereof, as well as combinations of said antibody fragments or variants, are administered to a recipient subject with a frequency of once every twenty-six weeks or less, such as once every sixteen weeks or less, once every eight weeks or less, or once every four weeks, or less. In another preferred embodiment of the invention, the anti-IL-6 antibodies described herein, or IL-6 binding fragments or variants thereof, as well as combinations thereof, are administered to a recipient subject with a frequency at most once per period of approximately one week, such as at most once per period of approximately two weeks, such as at most once per period of approximately four weeks, such as at most once per period of approximately eight weeks, such as at most once per period of approximately twelve weeks, such as at most once per period of approximately sixteen weeks, such as at most once per period of approximately twenty-four weeks.

It is understood that the effective dosage may depend on recipient subject attributes, such as, for example, age, gender, pregnancy status, body mass index, lean body mass, condition or conditions for which the composition is given, other health conditions of the recipient subject that may affect metabolism or tolerance of the composition, levels of IL-6 in the recipient subject, and resistance to the composition (for example, arising from the patient developing antibodies against the composition). A person of skill in the art would be able to determine an effective dosage and frequency of administration through routine experimentation, for example guided by the disclosure herein and the teachings in Goodman, L. S., Gilman, A., Brunton, L. L., Lazo, J. S., & Parker, K. L. (2006). Goodman & Gilman's the pharmacological basis of therapeutics. New York: McGraw-Hill; Howland, R. D., Mycek, M. J., Harvey, R. A., Champe, P. C., & Mycek, M. J. (2006). Pharmacology. Lippincott's illustrated reviews. Philadelphia: Lippincott Williams & Wilkins; and Golan, D. E. (2008). Principles of pharmacology: the pathophysiologic basis of drug therapy. Philadelphia, Pa., [etc.]: Lippincott Williams & Wilkins.

In another embodiment of the invention, the anti-TL-6 antibodies described herein, or IL-6 binding fragments or variants thereof, as well as combinations of said antibody fragments or variants, are administered to a subject in a pharmaceutical formulation.

A "pharmaceutical composition" refers to a chemical or biological composition suitable for administration to a mammal. Such compositions may be specifically formulated for administration via one or more of a number of routes, including but not limited to buccal, epicutaneous, epidural, inhalation, intraarterial, intracardial, intracerebroventricular, intradermal, intramuscular, intranasal, intraocular, intraperitoneal, intraspinal, intrathecal, intravenous, oral, parenteral, rectally via an enema or suppository, subcutaneous, subdermal, sublingual, transdermal, and transmucosal. In addition, administration can occur by means of injection, powder, liquid, gel, drops, or other means of administration.

In one embodiment of the invention, the anti-IL-6 antibodies described herein, or IL-6 binding fragments or variants thereof, as well as combinations of said antibody fragments or variants, may be optionally administered in combination with one or more active agents. Such active agents include analgesic, antipyretic, anti-inflammatory, antibiotic, antiviral, and anti-cytokine agents. Active agents include agonists, antagonists, and modulators of TNF-alpha, IL-2, IL-4, IL-6, IL-10, IL-12, IL-13, IL-18, IFN-alpha, IFN-gamma, BAFF, CXCL13, IP-10, VEGF, EPO, EGF, HRG, Hepatocyte Growth Factor (HGF), Hepcidin, including antibodies reactive against any of the foregoing, and antibodies reactive against any of their receptors. Active agents also include 2-Arylpropionic acids, Aceclofenac, Acemetacin, Acetylsalicylic acid (Aspirin), Alclofenac, Alminoprofen, Amoxiprin, Ampyrone, Arylalkanoic acids, Azapropazone, Benorylate/Benorilate, Benoxaprofen, Bromfenac, Carprofen, Celecoxib, Choline magnesium salicylate, Clofezone, COX-2 inhibitors, Dexibuprofen, Dexketoprofen, Diclofenac, Diflunisal, Droxicam, Ethenzamide, Etodolac, Etoricoxib, Faislamine, fenamic acids, Fenbufen, Fenoprofen, Flufenamic acid, Flunoxaprofen, Flurbiprofen, Ibuprofen, Ibuproxam, Indometacin, Indoprofen, Kebuzone, Ketoprofen, Ketorolac, Lornoxicam, Loxoprofen, Lumiracoxib, Magnesium salicylate, Meclofenamic acid, Mefenamic acid, Meloxicam, Metamizole, Methyl salicylate, Mofebutazone, Nabumetone, Naproxen, N-Arylanthranilic acids, Oxametacin, Oxaprozin, Oxicams, Oxyphenbutazone, Parecoxib, Phenazone, Phenylbutazone, Phenylbutazone, Piroxicam, Pirprofen, profens, Proglumetacin, Pyrazolidine derivatives, Rofecoxib, Salicyl salicylate, Salicylamide, Salicylates, Sulfinpyrazone, Sulindac, Suprofen, Tenoxicam, Tiaprofenic acid, Tolfenamic acid, Tolmetin, and Valdecoxib. Antibiotics include Amikacin, Aminoglycosides, Amoxicillin, Ampicillin, Ansamycins, Arsphenamine, Azithromycin, Azlocillin, Aztreonam, Bacitracin, Carbacephem, Carbapenems, Carbenicillin, Cefaclor, Cefadroxil, Cefalexin, Cefalothin, Cefalotin, Cefamandole, Cefazolin, Cefdinir, Cefditoren, Cefepime, Cefixime, Cefoperazone, Cebtaxime, Cefoxitin, Cefpodoxime, Cefprozil, Ceftazidime, Ceftibuten, Ceftizoxime, Ceftobiprole, Ceftriaxone, Cefuroxime, Cephalosporins, Chloramphenicol, Cilastatin, Ciprofloxacin, Clarithromycin, Clindamycin, Cloxacillin, Colistin, Co-trimoxazole, Dalfopristin, Demeclocycline, Dicloxacillin, Dirithromycin, Doripenem, Doxycycline, Enoxacin, Ertapenem, Erythromycin, Ethambutol, Flucloxacillin, Fosfomycin, Furazolidone, Fusidic acid, Gatifloxacin, Geldanamycin, Gentamicin, Glycopeptides, Herbimycin, Imipenem, Isoniazid, Kanamycin, Levofloxacin, Lincomycin, Linezolid, Lomefloxacin, Loracarbef, Macrolides, Mafenide, Meropenem, Meticillin, Metronidazole, Mezlocillin, Minocycline, Monobactams, Moxifloxacin, Mupirocin, Nafcillin, Neomycin, Netilmicin, Nitrofurantoin, Norfloxacin, Ofloxacin, Oxacillin, Oxytetracycline, Paromomycin, Penicillin, Penicillins, Piperacillin, Platensimycin, Polymyxin B, Polypeptides, Prontosil, Pyrazinamide, Quinolones, Quinupristin, Rifampicin, Rifampin, Roxithromycin, Spectinomycin, Streptomycin, Sulfacetamide, Sulfamethizole, Sulfanilimide, Sulfasalazine, Sulfisoxazole, Sulfonamides, Teicoplanin, Telithromycin, Tetracycline, Tetracyclines, Ticarcillin, Tobramycin, Trimethoprim, Trimethoprim-Sulfamethoxazole, Troleandomycin, Trovafloxacin, and Vancomycin. Active agents also include Aldosterone, Beclometasone, Betamethasone, Corticosteroids, Cortisol, Cortisone acetate, Deoxycorticosterone acetate, Dexamethasone, Fludrocortisone acetate, Glucocorticoids, Hydrocortisone, Methylprednisolone, Prednisolone, Prednisone, Steroids, and Triamcinolone. Antiviral agents include abacavir, aciclovir, acyclovir, adefovir, amantadine, amprenavir, an antiretroviral fixed dose combination, an antiretroviral synergistic enhancer, arbidol, atazanavir, atripla, brivudine, cidofovir, combivir, darunavir, delavirdine, didanosine, docosanol, edoxudine, efavirenz, emtricitabine, enfuvirtide, entecavir, entry inhibitors, famciclovir, fomivirsen, fosamprenavir, foscarnet, fosfonet, fusion inhibitor, ganciclovir, gardasil, ibacitabine, idoxuridine, imiquimod, imunovir, indinavir, inosine, integrase inhibitor, interferon, interferon type I, interferon type II, interferon type III, lamivudine, lopinavir, loviride, maraviroc, MK-0518, moroxydine, nelfinavir, nevirapine, nexavir, nucleoside analogues, oseltamivir, penciclovir, peramivir, pleconaril, podophyllotoxin, protease inhibitor, reverse transcriptase inhibitor, ribavirin, rimantadine, ritonavir, saquinavir, stavudine, tenofovir, tenofovir disoproxil, tipranavir, trifluridine, trizivir, tromantadine, truvada, valaciclovir, valganciclovir, vicriviroc, vidarabine, viramidine, zalcitabine, zanamivir, and zidovudine. Any suitable combination of these active agents is also contemplated.

A "pharmaceutical excipient" or a "pharmaceutically acceptable excipient" is a carrier, usually a liquid, in which an active therapeutic agent is formulated. In one embodiment of the invention, the active therapeutic agent is a humanized antibody described herein, or one or more fragments or variants thereof. The excipient generally does not provide any pharmacological activity to the formulation, though it may provide chemical and/or biological stability, and release characteristics. Exemplary formulations can be found, for example, in Remington's Pharmaceutical Sciences, 19.sup.th Ed., Gennaro, A., Ed., 1995 which is incorporated by reference.

As used herein "pharmaceutically acceptable carrier" or "excipient" includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents that are physiologically compatible. In one embodiment, the carrier is suitable for parenteral administration. Alternatively, the carrier can be suitable for intravenous, intraperitoneal, intramuscular, or sublingual administration. Pharmaceutically acceptable carriers include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the pharmaceutical compositions of the invention is contemplated. Supplementary active compounds can also be incorporated into the compositions.

In one embodiment of the invention that may be used to intravenously administer antibodies of the invention, including Ab1, for cancer indications, the administration formulation comprises, or alternatively consists of, about 10.5 mg/mL of antibody, 25 mM Histidine base, Phosphoric acid q.s. to pH 6, and 250 mM sorbitol.

In another embodiment of the invention that may be used to intravenously administer antibodies of the invention, including Ab1, for cancer indications, the administration formulation comprises, or alternatively consists of, about 10.5 mg/mL of antibody, 12.5 mM Histidine base, 12.5 mM Histidine HCl (or 25 mM Histidine base and Hydrochloric acid q.s. to pH 6), 250 mM sorbitol, and 0.015% (w/w) Polysorbate 80.

In another embodiment the present invention also relates to the use of the subject anti-IL-6 antibodies and antibody fragments for treatment of specific cancers in combination with chemotherapeutics, preferably EGFR inhibitors, and/or radiation and preferably wherein this combination is administered using a dosage regimen whereby the anti-IL-6 antibody or anti-IL-6 antibody fragment renders the cancer cells more sensitive to the action of the radiation or chemotherapeutic. These methods in a preferred embodiment will comprise the treatment of cancer using an EGFR inhibitor and an anti-IL-6 antibody according to the invention such as humanized Ab1 or ALD518. Non-limiting examples of cancers which may be treated using this combination include advanced and non-advanced, including metastatic lung cancers, breast cancer, head and neck cancer, (HNSCC), pancreatic cancer, colorectal cancer, anal cancer, glioblastoma multiforme, epithelial cancers, renal cell carcinomas, chronic myelogenous leukemia and other leukemias.

Examples of EGFR inhibitors that may be administered in therapeutic regimens with anti-IL-6 antibodies or antibody fragments according to the invention include by way of example Cetuximab (Erbitux) available from ImClone, Erlotinib (Tarceva) available from OSI Pharmaceuticals, Lapatinib (Tykerb) available from Glaxo, Panitimumab (Vectibox) available from Amgen, Sunitinib or Sutent (N-(2-diethylaminoethyl)-5-[(Z)-(5-fluoro-2-oxo-1H-indol-3-ylidene)methyl- ]-2,4-dimethyl-1H-pyrrole-3-carboxamide) marketed by Pfizer, Gefitinib (Iressa) or N-(3-chloro-4-fluoro-phenyl)-7-methoxy-6-(3-morpholin-4-ylpropoxy)quinazo- lin-4-amine marketed by AstraZeneca, Zalutumumab in clinical development by GenMab, and others.

The amount of antibody administered in combination with the chemotherapeutic may range form about 5-1000 mg, more typically from about 25-500 mg, e.g., 50, 80, 100, 150, 160, 200, 240, 250, 300, 320, 350, 400, 480 mg dosage regimens. The antibody may be administered by different means, e.g., intravenously or subcutaneously and may be administered together (in same or different dosage compositions) or separate from the chemotherapeutic such as an EGFR inhibitor.

In a preferred embodiment the treated cancer will be s a lung cancer such as a non-small lung cancer e.g., squamous cell carcinoma, large cell carcinoma or adenocarcinoma or a small cell lung cancer such as small cell carcinoma (oat cell cancer) or combined small cull carcinoma. In a preferred embodiment the treated lung cancer will comprise squamous cell carcinoma. In some instances these methods will be used to treat cancer patients wherein the patient has manifested a tolerance for the particular chemotherapeutic such as an EGFR inhibitor, e.g., Erlotinibor sunitinib or imatinib, perhaps as a result of a mutant EGFR As disclosed in Yao et al., Proc. Natl, Acad. Sci., USA and Nishioka et al., Leukemia 23:2304-2308 (2009) resistance of some tumors and cell lines such as leukemic and lung cancers to chemotherapeutics may involve inflammatory responses that result in the aberrant expression of IL-6 that may render the tumor resistant to chemotherapy. In addition the subject anti-IL-6 antibodies and fragments may be used to treat cancers that have become resistant to radiotherapy by administering an anti-IL-6 antibody according to the invention prior, concurrent or after radiation.

In a preferred embodiment of the invention wherein the antibodies may be used to subcutaneously administer antibodies of the invention, including Ab1, for rheumatoid arthritis indications, the administration formulation comprises, or alternatively consists of, about 50 or 100 mg/mL of antibody, about 5 mM Histidine base, about 5 mM Histidine HCl to make final pH 6, 250 mM sorbitol, and 0.015% (w/w) Polysorbate 80. In another embodiment of the invention that may be used to subcutaneously administer antibodies of the invention, including Ab1, for rheumatoid arthritis indications, the administration formulation comprises, or alternatively consists of, about 20 or 100 mg/mL of antibody, about 5 mM Histidine base, about 5 mM Histidine HCl to make final pH 6, 250 to 280 mM sorbitol (or sorbitol in combination with sucrose), and 0.015% (w/w) Polysorbate 80, said formulation having a nitrogen headspace in the shipping vials.

Pharmaceutical compositions typically must be sterile and stable under the conditions of manufacture and storage. The invention contemplates that the pharmaceutical composition is present in lyophilized form. The composition can be formulated as a solution, microemulsion, liposome, or other ordered structure suitable to high drug concentration. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol), and suitable mixtures thereof. The invention further contemplates the inclusion of a stabilizer in the pharmaceutical composition.

In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, or sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, monostearate salts and gelatin. Moreover, the alkaline polypeptide can be formulated in a time release formulation, for example in a composition which includes a slow release polymer. The active compounds can be prepared with carriers that will protect the compound against rapid release, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, polylactic acid and polylactic, polyglycolic copolymers (PLG). Many methods for the preparation of such formulations are known to those skilled in the art.

For each of the recited embodiments, the compounds can be administered by a variety of dosage forms. Any biologically-acceptable dosage form known to persons of ordinary skill in the art, and combinations thereof, are contemplated. Examples of such dosage forms include, without limitation, reconstitutable powders, elixirs, liquids, solutions, suspensions, emulsions, powders, granules, particles, microparticles, dispersible granules, cachets, inhalants, aerosol inhalants, patches, particle inhalants, implants, depot implants, injectables (including subcutaneous, intramuscular, intravenous, and intradermal), infusions, and combinations thereof.

The above description of various illustrated embodiments of the invention is not intended to be exhaustive or to limit the invention to the precise form disclosed. While specific embodiments of, and examples for, the invention are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize. The teachings provided herein of the invention can be applied to other purposes, other than the examples described above.

These and other changes can be made to the invention in light of the above detailed description. In general, in the following claims, the terms used should not be construed to limit the invention to the specific embodiments disclosed in the specification and the claims. Accordingly, the invention is not limited by the disclosure, but instead the scope of the invention is to be determined entirely by the following claims.

The invention may be practiced in ways other than those particularly described in the foregoing description and examples. Numerous modifications and variations of the invention are possible in light of the above teachings and, therefore, are within the scope of the appended claims.

Certain teachings related to methods for obtaining a clonal population of antigen-specific B cells were disclosed in U.S. Provisional patent application No. 60/801,412, filed May 19, 2006, the disclosure of which is herein incorporated by reference in its entirety.

Certain teachings related to humanization of rabbit-derived monoclonal antibodies and preferred sequence modifications to maintain antigen binding affinity were disclosed in International Application No. 12/124,723, entitled "Novel Rabbit. Antibody Humanization Method and Humanized Rabbit Antibodies", filed May 21, 2008, the disclosure of which is herein incorporated by reference in its entirety.

Certain teachings related to producing antibodies or fragments thereof using mating competent yeast and corresponding methods were disclosed in U.S. patent application Ser. No. 11/429,053, filed May 8, 2006, (U.S. Patent Application Publication No. US2006/0270045), the disclosure of which is herein incorporated by reference in its entirety.

Certain teachings related to anti-IL-6 antibodies, methods of producing antibodies or fragments thereof using mating competent yeast and corresponding methods were disclosed in U.S. provisional patent application No. 60/924,550, filed May 21, 2007, the disclosure of which is herein incorporated by reference in its entirety.

Certain teachings related to anti-IL-6 antibodies and methods of using those antibodies or fragments thereof to address certain diseases and/or disorders were disclosed in U.S. provisional patent application Nos. 61/117,839, 61/117,861, and 61/117,811, all filed on Nov. 25, 2008, the disclosures of each of which are herein incorporated by reference in their entireties.

Certain anti-IL-6 antibody polynucleotides and polypeptides are disclosed in the sequence listing accompanying this patent application filing, and the disclosure of said sequence listing is herein incorporated by reference in its entirety.

The entire disclosure of each document cited herein (including patents, patent applications, journal articles, abstracts, manuals, books, or other disclosures) is herein incorporated by reference in its entirety.

The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the subject invention, and are not intended to limit the scope of what is regarded as the invention. Efforts have been made to ensure accuracy with respect to the numbers used (e.g. amounts, temperature, concentrations, etc.) but some experimental errors and deviations should be allowed for. Unless otherwise indicated, parts are parts by weight, molecular weight is average molecular weight, temperature is in degrees centigrade; and pressure is at or near atmospheric.

EXAMPLES

In the following examples, the term "Ab1" refers to an antibody containing the light chain sequence of SEQ ID NO: 702 and the heavy chain sequence of SEQ ID NO: 704, except where the context indicates otherwise.

Example 1 Production of Enriched Antigen-Specific B Cell Antibody Culture

Panels of antibodies are derived by immunizing traditional antibody host animals to exploit the native immune response to a target antigen of interest Typically, the host used for immunization is a rabbit or other host that produces antibodies using a similar maturation process and provides for a population of antigen-specific B cells producing antibodies of comparable diversity, e.g., epitopic diversity. The initial antigen immunization can be conducted using complete Freund's adjuvant (CFA), and the subsequent boosts effected with incomplete adjuvant. At about 50-60 days after immunization, preferably at day 55, antibody titers are tested, and the Antibody Selection (ABS) process is initiated if appropriate titers are established. The two key criteria for ABS initiation are potent antigen recognition and function-modifying activity in the polyclonal sera.

At the time positive antibody titers are established, animals are sacrificed and B cell sources isolated. These sources include: the spleen, lymph nodes, bone marrow, and peripheral blood mononuclear cells (PBMCs). Single cell suspensions are generated, and the cell suspensions are washed to make them compatible for low temperature long term storage. The cells are then typically frozen.

To initiate the antibody identification process, a small fraction of the frozen cell suspensions are thawed, washed, and placed in tissue culture media. These suspensions are then mixed with a biotinylated form of the antigen that was used to generate the animal immune response, and antigen-specific cells are recovered using the Miltenyi magnetic bead cell selection methodology. Specific enrichment is conducted using streptavidin beads. The enriched population is recovered and progressed in the next phase of specific B cell isolation.

Example 2 Production of Clonal, Antigen-Specific B Cell-Containing Culture

Enriched B cells produced according to Example 1 are then plated at varying cell densities per well in a 96 well microtiter plate. Generally, this is at 50, 100, 250, or 500 cells per well with 10 plates per group. The media is supplemented with 4% activated rabbit T cell conditioned media along with 50K frozen irradiated EL4B feeder cells. These cultures are left undisturbed for 5-7 days at which time supernatant-containing secreted antibody is collected and evaluated for target properties in a separate assay setting. The remaining supernatant is left intact, and the plate is frozen at -70.degree. C. Under these conditions, the culture process typically results in wells containing a mixed cell population that comprises a clonal population of antigen-specific B cells, i.e., a single well will only contain a single monoclonal antibody specific to the desired antigen.

Example 3 Screening of Antibody Supernatants for Monoclonal Antibody of Desired Specificity and/or Functional Properties

Antibody-containing supernatants derived from the well containing a clonal antigen-specific B cell population produced according to Example 2 are initially screened for antigen recognition using ELISA methods. This includes selective antigen immobilization (e.g., biotinylated antigen capture by streptavidin coated plate), non-specific antigen plate coating, or alternatively, through an antigen build-up strategy (e.g., selective antigen capture Followed by binding partner addition to generate a heteromeric protein-antigen complex). Antigen-positive well supernatants are then optionally tested in a function-modifying assay that is strictly dependant on the ligand. One such example is an in vitro protein-protein interaction assay that recreates the natural interaction of the antigen ligand with recombinant receptor protein. Alternatively, a cell-based response that is ligand dependent and easily monitored (e.g., proliferation response) is utilized. Supernatant that displays significant antigen recognition and potency is deemed a positive well. Cells., derived from the original positive well are then transitioned to the antibody recovery phase.

Example 4 Recovery of Single, Antibody-Producing B Cell of Desired Antigen Specificity

Cells are isolated from a well that contains a clonal population of antigen-specific B cells (produced according to Example 2 or 3), which secrete a single antibody sequence. The isolated cells are then assayed to isolate a single, antibody-secreting cell. Dynal streptavidin beads are coated with biotinylated target antigen under buffered medium to prepare antigen-containing microbeads compatible with cell viability. Next antigen-loaded beads, antibody-producing cells from the positive well, and a fluorescein isothiocyanate (FITC)-labeled anti-host H&L IgG antibody (as noted, the host can be any mammalian host, e.g., rabbit, mouse, rat, etc.) are incubated together at 37.degree. C. This mixture is then re-pipetted in aliquots onto a glass slide such that each aliquot has on average a single, antibody-producing B-cell. The antigen-specific, antibody-secreting cells are then detected through fluorescence microscopy. Secreted antibody is locally concentrated onto the adjacent beads due to the bound antigen and provides localization information based on the strong fluorescent signal. Antibody-secreting cells are identified via FITC detection of antibody-antigen complexes formed adjacent to the secreting cell. The single cell found in the center of this complex is then recovered using a micromanipulator. The cell is snap-frozen in an eppendorf PCR tube for storage at -80.degree. C. until antibody sequence recovery is initiated.

Example 5 Isolation of Antibody Sequences from Antigen-Specific B Cell

Antibody sequences are recovered using a combined RT-PCR based method from a single isolated B-cell produced according to Example 4 or an antigenic specific R cell isolated from the clonal B cell population obtained according to Example 2. Primers are designed to anneal in conserved and constant regions of the target immunoglobulin genes (heavy and light), such as rabbit immunoglobulin sequences, and a two-step nested PCR recovery step is used to obtain the antibody sequence. Amplicons from each well are analyzed for recovery and size integrity. The resulting fragments are then digested with Alul to fingerprint the sequence clonality. Identical sequences display a common fragmentation pattern in their electrophoretic analysis. Significantly, this common fragmentation pattern which proves cell clonality is generally observed even in the wells originally plated up to 1000 cells/well. The original heavy and light chain amplicon fragments are then restriction enzyme digested with HindIII and XhoI or HindIII and BsiWI to prepare the respective pieces of DNA for cloning. The resulting digestions are then ligated into an expression vector and transformed into bacteria for plasmid propagation and production. Colonies are selected for sequence characterization.

Example 6 Recombinant Production of Monoclonal Antibody of Desired Antigen Specificity and/or Functional Properties

Correct full-length antibody sequences for each well containing a single monoclonal antibody is established and miniprep DNA is prepared using Qiagen solid-phase methodology. This DNA is then used to transfect mammalian cells to produce recombinant full-length antibody. Crude antibody product is tested for antigen recognition and functional properties to confirm the original characteristics are found in the recombinant antibody protein. Where appropriate, large-scale transient mammalian transfections are completed, and antibody is purified through Protein A affinity chromatography. Kd is assessed using standard methods (e.g., Biacore.TM.) as well as IC50 in a potency assay.

Example 7 Preparation of Antibodies that Bind Human IL-6

By using the antibody selection protocol described herein, one can generate an extensive panel of antibodies. The antibodies have high affinity towards IL-6 (single to double digit pM Kd) and demonstrate potent antagonism of IL-6 in multiple cell-based screening systems (T1165 and HepG2). Furthermore, the collection of antibodies displays distinct modes of antagonism toward IL-6-driven processes.

Immunization Strategy

Rabbits were immunized with huIL-6 (R&R). Immunization consisted of a first subcutaneous (sc) injection of 100 .mu.g in complete Freund's adjuvant (CFA) (Sigma) followed by two boosts, two weeks apart, of 50 .mu.g each in incomplete Freund's adjuvant (IFA) (Sigma). Animals were bled on day 55, and scrum titers were determined by ELISA (antigen recognition) and by non-radioactive proliferation assay (Promega) using the T1165 cell line.

Antibody Selection Titer Assessment

Antigen recognition was determined by coating Immulon 4 plates (Thermo) with 1 .mu.g/mL of huIL-6 (50 .mu.L/well) in phosphate buffered saline (PBS, Hyclone) overnight at 4.degree. C. On the day of the assay, plates were washed 3 times with PBS/Tween 20 (PBST tablets, Calbiochem). Plates were then blocked with 200 .mu.L/well of 0.5% fish skin gelatin (FSG, Sigma) in PBS for 30 minutes at 37.degree. C. Blocking solution was removed, and plates were blotted. Serum samples were made (bleeds and pre-bleeds) at a starting dilution of 1:100 (all dilutions were made in FSG 50 .mu.L/well) followed by 1:10 dilutions across the plate (column 12 was left blank for background control), Plates were incubated for 30 minutes at 37.degree. C. Plates were washed 3 times with PBS/Tween 20. Goat anti-rabbit Fc-HRP (Pierce) diluted 1:5000 was added to all wells (50 .mu.L/well), and plates were incubated for 30 minutes at 37.degree. C. Plates were washed as described above. 50 .mu.L/well of TMB-Stable stop (Fitzgerald Industries) was added to plates, and color was allowed to develop, generally for 3 to 5 minutes. The development reaction was stopped with 50 .mu.L/well 0.5 M HCl. Plates were read at 450 nm. Optical density (OD) versus dilution was plotted using Graph Pad Prizm software, and titers were determined.

Functional Titer Assessment

The functional activity of the samples was determined by a T1165 proliferation assay. T1165 cells were routinely maintained in modified RPMI medium (Hyclone) supplemented with HEPES, sodium pyruvate, sodium bicarbonate, L-glutamine, high glucose, penicillin/streptomycin, 10% heat inactivated fetal bovine serum (FBS) (all supplements from Hyclone), 2-mercaptoethanol (Sigma), and 10 ng/mL of huIL-6 (R&D). On the day of the assay, cell viability was determined by trypan blue (invitrogen), and cells were seeded at a fixed density of 20,000 cells/well. Prior to seeding, cells were washed twice in the medium described above without human-IL-6 (by centrifuging at 13000 rpm for 5 minutes and discarding the supernatant). After the last wash, cells were resuspended in the same medium used for washing in a volume equivalent to 50 .mu.L/well. Cells were set aside at room temperature.

In a round-bottom, 96-well plate (Costar), scrum samples were added starting at 1:100, followed by a 1:10 dilution across the plate (columns 2 to 10) at 30 .mu.L/well in replicates of 5 (rows B to F: dilution made in the medium described above with no huIL-6). Column 11 was medium only for IL-6 control. 30 .mu.L/well of huIL-6 at 4.times. concentration of the final EC50 (concentration previously determined) were added to all wells (huIL-6 was diluted in the medium described above). Wells were incubated for 1 hour at 37.degree. C. to allow antibody binding to occur. After 1 hour, 50 .mu.L/well of antibody-antigen (Ab-Ag) complex were transferred to a flat-bottom, 96-well plate (Costar) following the plate map format laid out in the round-bottom plate. On Row G, 50 .mu.L/well of medium were added to all wells (columns 2 to 11) for background control. 50 .mu.L/well of the cell suspension set aside were added to all wells (columns 2 to 11, rows B to G). On Columns 1 and 12 and on rows A and H, 200 .mu.L/well of medium was added to prevent evaporation of test wells and to minimize edge effect. Plates were incubated for 72 h at 37.degree. C. in 4% CO.sub.2. At 72 h, 20 .mu.L/well of CellTiter96 (Promega) reagents was added to all test wells per manufacturer protocol, and plates were incubated for 2 h at 37.degree. C. At 2 h, plates were gently mixed on an orbital shaker to disperse cells and to allow homogeneity in the test wells. Plates were read at 490 nm wavelength. Optical density (OD) versus dilution was plotted using Graph Pad Prizm software, and functional titer was determined. A positive assay control plate was conducted as described above using MAB2061 (R&D Systems) at a starting concentration of 1 .mu.g/mL (final concentration) followed by 1:3 dilutions across the plate.

Tissue Harvesting

Once acceptable titers were established, the rabbit(s) were sacrificed. Spleen, lymph nodes, and whole blood were harvested and processed as follows:

Spleen and lymph nodes were processed into a single cell suspension by disassociating the tissue and pushing through sterile wire mesh at 70 .mu.m (Fisher) with a plunger of a 20 cc syringe. Cells were collected in the modified RPMI medium described above without huIL-6, but with low glucose. Cells were washed twice by centrifugation. After the last wash, cell density was determined by trypan blue. Cells were centrifuged at 1500 rpm for 10 minutes; the supernatant was discarded. Cells were resuspended in the appropriate volume of 10% dimethyl sulfoxide (DMSO, Sigma) in FBS (Hyclone) and dispensed at 1 mL/vial. Vials were then stored at -70.degree. C. for 24 h prior to being placed in a liquid nitrogen (LN2) tank for long-term storage.

Peripheral blood mononuclear cells (PBMCs) were isolated by mixing whole blood with equal parts of the low glucose medium described above without FBS. 35 mL of the whole blood mixture was carefully layered onto 8 mL of Lympholyte Rabbit (Cedarlane) into a 45 mL conical tube (Corning) and centrifuged 30 minutes at 2500 rpm at room temperature without brakes. After centrifugation, the PBMC layers were carefully removed using a glass Pasteur pipette (VWR), combined, and placed into a clean 50 mL vial. Cells were washed twice with the modified medium described above by centrifugation at 1500 rpm for 10 minutes at room temperature, and cell density was determined by trypan blue staining. After the last wash, cells were resuspended in an appropriate volume of 10% DMSO/FBS medium and frozen as described above.

B Cell Culture

On the day of setting up B cell culture, PBMC, splenocyte, or lymph node vials were thawed for use. Vials were removed from LN2 tank and placed in a 37.degree. C. water bath until thawed. Contents of vials were transferred into 15 mL conical centrifuge tube (Corning) and 10 mL of modified RPMI described above was slowly added to the tube. Cells were centrifuged for 5 minutes at 1.5K rpm, and the supernatant was discarded. Cells were resuspended in 10 mL of fresh media. Cell density and viability was determined by trypan blue. Cells were washed again and resuspended at 1E07 cells/80 .mu.L medium. Biotinylated huIL-6 (B huIL-6) was added to the cell suspension at the final concentration of 3 .mu.g/mL and incubated for 30 minutes at 4.degree. C. Unbound B huIL-6 was removed with two 10 mL washes of phosphate-buffered (PBF):Ca/Mg free PBS (Hyclone), 2 mM ethylenediamine tetraacetic acid (EDTA), 0.5% bovine serum albumin (BSA) (Sigma-biotin free). After the second wash, cells were resuspended at 1E07 cells/80 .mu.L PBF. 20 .mu.L of MACS.RTM. streptavidin beads (Milteni)/10E7 cells were added to the cell suspension. Cells were incubated at 4.degree. C. for 15 minutes. Cells were washed once with 2 mL of PBF/10E7 cells. After washing, the cells were resuspended at 1E08 cells/500 .mu.L of PBF and set aside. A MACS.RTM. MS column (Milteni) was pre-rinsed with 500 mL of PBF on a magnetic stand (Milteni). Cell suspension was applied to the column through a pre-filter, and unbound fraction was collected. The column was washed with 1.5 mL of PRE buffer. The column was removed from the magnet stand and placed onto a clean, sterile 5 mL Polypropylene Falcon tube. 1 mil, of PBF buffer was added to the top of the column, and positive selected cells were collected. The yield and viability of positive and negative cell fraction was determined by trypan blue staining. Positive selection yielded an average of 1% of the starting cell concentration.

A pilot cell screen was established to provide information on seeding levels for the culture. Three 10-plate groups (a total of 30 plates) were seeded at 50, 100, and 200 enriched 8 cells/well. In addition, each well contained 50K cells/well of irradiated EL-4.B5 cells (5,000 Rads) and an appropriate level of T cell supernatant (ranging from 1-5% depending on preparation) in high glucose modified RPMI medium at a final volume of 250 .mu.L/well. Cultures were incubated for 5 to 7 days at 37.degree. C. in 4% CO.sub.2.

Identification of Selective Antibody Secreting B Cells

Cultures were tested for antigen, recognition and functional activity between days 5 and 7.

Antigen Recognition Screening

The ELISA format used is as described above except 50 .mu.L of supernatant from the B cell cultures (BCC) wells (all 30 plates) was used as the source of the antibody. The conditioned medium was transferred to antigen-coated plates. After positive wells were identified, the supernatant was removed and transferred to a 96-well master plate(s). The original culture plates were then frozen by removing all the supernatant except 40 .mu.L/well and adding 60 .mu.L/well of 16% DMSO in FBS. Plates were wrapped in paper towels to slow freezing and placed at -70.degree. C.

Functional Activity Screening

Master plates were then screened for functional activity in the T1165 proliferation assay as described before, except row B was media only for background control, row C was media+IL-6 for positive proliferation control, and rows D-G and columns 2-11 were the wells from the BCC (50 .mu.L/well, single points). 40 .mu.L of IL-6 was added to all wells except the media row at 2.5 times the EC50 concentration determined for the assay. After 1 h incubation, the Ab/Ag complex was transferred to a tissue culture (TC) treated, 96-well, flat-bottom plate. 20 .mu.L of cell suspension in modified RPMI medium without huIL-6 (T1165 at 20,000 cells/well) was added to all wells (100 .mu.L final volume per well). Background was subtracted, and observed OD values were transformed into % of inhibition.

B Cell Recovery

Plates containing wells of interest were removed from 70.degree. C., and the cells from each well were recovered with 5-200 .mu.L washes of medium/well. The washes were pooled in a 1.5 mL sterile centrifuge tube, and cells were pelleted for 2 minutes at 1500 rpm.

The tube was inverted, the spin repeated, and the supernatant carefully removed. Cells were resuspended in 100 .mu.L/tube of medium. 100 .mu.L biotinylated IL-6 coated streptavidin M280 dynabeads (Invitrogen) and 16 .mu.L of goat anti-rabbit H&L IgG-FITC diluted 1:100 in medium was added to the cell suspension.

20 .mu.L of cell/beads/FITC suspension was removed, and 5 .mu.L droplets were prepared on a glass slide (Corning) previously treated with Sigmacote (Sigma), 35 to 40 droplets/slide. An impermeable barrier of paraffin oil (JT Baker) was added to submerge the droplets, and the slide was incubated for 90 minutes at 37.degree. C., 4% CO.sub.2 in the dark.

Specific B cells that produce antibody can be identified by the fluorescent ring around them due to antibody secretion, recognition of the bead-associated biotinylated antigen, and subsequent detection by the fluorescent-IgG detection reagent. Once a cell of interest was identified, the cell in the center of the fluorescent ring was recovered via a micromanipulator (Eppendorf). The single cell synthesizing and exporting the antibody was transferred into a 250 microcentrifuge tube and placed in dry ice. After recovering all cells of interest, these were .mu.L transferred to 70.degree. C. for long-term storage.

Example 8 Yeast Cell Expression

Antibody Genes:

Genes were cloned and constructed that directed the synthesis of a chimeric humanized rabbit monoclonal antibody.

Expression Vector:

The vector contains the following functional components: 1) a mutant ColE1 origin of replication, which facilitates the replication of the plasmid vector in cells of the bacterium Escherichia coli; 2) a bacterial Sh ble gene, which confers resistance to the antibiotic Zeocin.TM. (phleomycin) and serves as the selectable marker for transformations of both E. coli and P. pastoris; 3) an expression cassette composed of the glyceraldehyde dehydrogenase gene (GAP gene) promoter, fused to sequences encoding the Saccharomyces cerevisiae alpha mating factor pre pro secretion leader sequence, followed by sequences encoding a P. pastoris transcriptional termination signal from the P. pastoris alcohol oxidase 1 gene (AOX1). The Zeocin.TM. (phleomycin) resistance marker gene provides a means of enrichment for strains that contain multiple integrated copies of an expression vector in a strain by selecting for transformants that are resistant to higher levels of Zeocin.TM. (phleomycin).

P. pastoris Strains:

P. pastoris strains met1, lys3, ura3 and ade1 may be used. Although any two complementing sets of auxotrophic strains could be used for the construction and maintenance of diploid strains, these two strains are especially suited for this method for two reasons. First, they grow more slowly than diploid strains that are the result of their mating or fusion. Thus, if a small number of haploid ade1 or ura3 cells remain present in a culture or arise through meiosis or other mechanism, the diploid strain should outgrow them in culture.

The second is that it is easy to monitor the sexual state of these strains since diploid Ade+ colonies arising from their mating are a normal white or cream color, whereas cells of any strains that are haploid ade1 mutants will form a colony with a distinct pink color. In addition, any strains that are haploid ura3 mutants are resistant to the drug 5-fluoro-orotic acid (FDA) and can be sensitively identified by plating samples of a culture on minimal medium+uracil plates with FOA. On these plates, only uracil-requiring ura3 mutant (presumably haploid) strains can grow and form colonies. Thus, with haploid parent strains marked with ade1 and ura3, one can readily monitor the sexual state of the resulting antibody-producing diploid strains (haploid versus diploid).

Methods

Construction of pGAPZ-Alpha Expression Vectors for Transcription of Light and Heavy Chain Antibody Genes.

The humanized light and heavy chain fragments were cloned into the pGAPZ expression vectors through a PCR directed process. The recovered humanized constructs were subjected to amplification under standard KOD polymerase (Novagen) kit conditions ((1) 94.degree. C., 2 minutes; (2) 94.degree. C., 30 seconds (3) 55.degree. C. 30 seconds; (4) 72.degree. C., 30 seconds-cycling through steps 2-4 for 35 times; (5) 72.degree. C. 2 minutes) employing the following primers (1) light chain forward AGCGCTTATTCCGCTATCCAGATGACCCAGTC--the AfeI site is single underlined. The end of the HSA signal sequence is double underlined, followed by the sequence for the mature variable light chain (not underlined); the reverse CGTACGTTTGATTTCCACCTTG.

Variable light chain reverse primer. BsiWI site is underlined, followed by the reverse complement for the 3' end of the variable light chain. Upon restriction enzyme digest with AfeI and BsiWI this enable insertion in-frame with the pGAPZ vector using the human HAS leader sequence in frame with the human kapp light chain constant region for export. (2) A similar strategy is performed for the heavy chain. The forward primer employed is AGCGCTTATTCCGAGGTGCAOCTGGTGGAGTC. The AfeI site is single underlined. The end of the HSA signal sequence is double underlined, followed by the sequence for the mature variable heavy chain (not underlined). The reverse heavy chain primer is CTCGAGACGGTGACGAGGGT. The XhoI site is underlined, followed by the reverse complement for the 3' end of the variable heavy chain. This enables cloning of the heavy chain in-frame with IgG-.gamma.1 CH1-CH2-CH3 region previous inserted within pGAPZ using a comparable directional cloning strategy.

Transformation of Expression Vectors into Haploid ade1 ura3, met1 and lys3 Host Strains of P. pastoris.

All methods used for transformation of haploid P. pastoris strains and genetic manipulation of the P. pastoris sexual cycle are as described in Higgins, D. R., and Cregg, J. M., Eds. 1998. Pichia Protocols. Methods in Molecular Biology. Humana Press, Totowa, N.J.

Prior to transformation, each expression vector is linearized within the GAP promoter sequences with AvrII to direct the integration of the vectors into the GAP promoter locus of the P. pastoris genome. Samples of each vector are then individually transformed into electrocompetent cultures of the ade1, ura3, met1 and lys3 strains by electroporation and successful transformants are selected on YPD Zeocin.TM. (phleomycin) plates by their resistance to this antibiotic. Resulting colonies are selected, streaked for single colonies on YPD Zeocin.TM. (phleomycin) plates and then examined for the presence of the antibody gene insert by a PCR assay on genomic DNA extracted from each strain for the proper antibody gene insert and/or by the ability of each strain to synthesize an antibody chain by a colony lift/immunoblot method (Wung et al. Biotechniques 21 808-812 (1996). Haploid ade1, met1 and lys3 strains expressing one of the three heavy chain constructs are collected for diploid constructions along with haploid ura3 strain expressing light chain gene. The haploid expressing heavy chain genes are mated with the appropriate light chain haploid ura3 to generate diploid secreting protein.

Mating of haploid strains synthesizing a single antibody chain and selection of diploid derivatives synthesizing tetrameric functional antibodies. To mate P. pastoris haploid strains, each ade1 (or met1 or lys3) heavy chain producing strain to be crossed is streaked across a rich YPD plate and the ura3 light chain producing strain is streaked across a second YPD plate (.about.10 streaks per plate). After one or two days incubation at 30.degree. C., cells from one plate containing heavy chain strains and one plate containing ura3 light chain strains are transferred to a sterile velvet cloth on a replica-plating block in a cross hatched pattern so that each heavy chain strain contain a patch of cells mixed with each light chain strain. The cross-streaked replica plated cells are then transferred to a mating plate and incubated at 25.degree. C. to stimulate the initiation of mating between strains. After two days, the cells on the mating plates are transferred again to a sterile velvet on a replica-plating block and then transferred to minimal medium plates. These plates are incubated at 30.degree. C. for three days to allow for the selective growth of colonies of prototrophic diploid strains. Colonies that arose are picked and streaked onto a second minimal medium plate to single colony isolate and purify each diploid strain. The resulting diploid cell lines are then examined for antibody production.

Putative diploid strains are tested to demonstrate that they are diploid and contain both expression vectors for antibody production. For diploidy, samples of a strain are spread on mating plates to stimulate them to go through meiosis and form spores. Haploid spore products are collected and tested for phenotype. If a significant percentage of the resulting spore products are single or double auxotrophs it may be concluded that the original strain must have been diploid. Diploid strains are examined for the presence of both antibody genes by extracting genomic DNA from each and utilizing this DNA in PCR reactions specific for each gene.

Fusion of haploid strains synthesiling a single antibody chain and selection of diploid derivatives synthesizing tetrameric functional antibodies. As an alternative to the mating procedure described above, individual cultures of single-chain antibody producing haploid ade1 and ura3 strains are spheroplasted and their resulting spheroplasts fused using polyethylene glyeol/CaCl.sub.2. The fused haploid strains are then embedded in agar containing 1 M sorbitol and minimal medium to allow diploid strains to regenerate their cell wall and grow into visible colonies. Resulting colonies are picked from the agar, streaked onto a minimal medium plate, and the plates are incubated for two days at 30.degree. C. to generate colonies from single cells of diploid cell lines. The resulting putative diploid cell lines are then examined for diploidy and antibody production as described above.

Purification and analysis of antibodies. A diploid strain for the production of full length antibody is derived through the mating of met1 light chain and lys3 heavy chain using the methods described above. Culture media from shake-flask or fermenter cultures of diploid P. pastoris expression strains are collected and examined for the presence of antibody protein via SDS-PAGE and immunoblotting using antibodies directed against heavy and light chains of human IgG, or specifically against the heavy chain of IgG.

To purify the yeast secreted antibodies, clarified media from antibody producing cultures are passed through a protein A column and after washing with 20 mM sodium phosphate, pH 7.0, binding buffer, protein A bound protein is eluted using 0.1 M glycine HCl buffer, pH 3.0. Fractions containing the most total protein are examined by Coomasie blue strained SOS-PAGE and immunoblotting for antibody protein. Antibody is characterized using the ELISA described above for IL-6 recognition.

Assay for Antibody Activity.

The recombinant yeast-derived humanized antibody is evaluated for functional activity through the IL-6 driven T1165 cell proliferation assay and IL-6 stimulated HepG2 haptoglobin assay described above.

Example 9 Acute Phase Response Neutralization by Intravenous Administration of Anti-IL-6 Antibody Ab1

Human IL-6 can provoke an acute phase response in rats, and one of the major acute phase proteins that is stimulated in the rat is alpha-2 macroglobulin (A2M). A study was designed to assess the dose of antibody Ab1 required to ablate the A2M response to a single s.c. injection of 100 .mu.g of human IL-6 given one hour after different doses (0.03, 0.1, 0.3, 1, and 3 mg/kg) of antibody Ab1 administered intravenously (n=10 rats/dose level) or polyclonal human IgG1 as the control (n=10 rats), Plasma was recovered and the A2M was quantitated via a commercial sandwich ELISA kit (ICL Inc., Newberg Oreg.; cat. no.--E-25A2M). The endpoint was the difference in the plasma concentration of A2M at the 24 hour time point (post-Ab1). The results are presented in FIG. 4.

The ID50 for antibody Ab1 was 0.1 mg/kg with complete suppression of the A2M response at the 0.3 mg/kg. This firmly establishes in vivo neutralization of human IL-6 can be accomplished by antibody Ab1.

Example 10 RXF393 Cachexia Model Study 1

Introduction

The human renal cell cancer cell line, RXF393 produces profound weight loss when transplanted into athymic nude mice. Weight loss begins around day 15 after transplantation with 80% of all animals losing at least 30% of their total body weight by day 18-20 after transplantation. RXF393 secretes human IL-6 and the plasma concentration of human IL-6 in these animals is very high at around 10 ng/mL. Human IL-6 can bind murine soluble IL-6 receptor and activate IL-6 responses in the mouse. Human IL-6 is approximately 10 times less potent than murine IL-6 at activating IL-6 responses in the mouse. The objectives of this study were to determine the effect of antibody Ab1, on survival, body weight, serum amyloid A protein, hematology parameters, and tumor growth in athymic nude mice transplanted with the human renal cell cancer cell line, RXF393.

Methods

Eighty, 6 week old, male athymic nude mice were implanted with RXF393 tumor fragments (30-40 mg) subcutaneously in the right flank. Animals were then divided into eight groups of ten mice. Three groups were given either antibody Ab1 at 3 mg/kg, 10 mg/kg, or 30 mg/kg intravenously weekly on day 1, day 8, day 15 and day 22 after transplantation (progression groups). Another three groups were given either antibody Ab1 at 3 mg/kg, or 10 mg/kg, or 30 mg/kg intravenously weekly on day 8, day 15 and day 22 after transplantation (regression groups). Finally, one control group was given polyclonal human IgG 30 mg/kg and a second control group was given phosphate buffered saline intravenously weekly on day 1, day 8, day 15 and day 22 after transplantation.

Animals were euthanized at either day 28, when the tumor reached 4,000 mm or if they became debilitated (>30% loss of body weight). Animals were weighed on days 1, 6 and then daily from days 9 to 28 after transplantation. Mean Percent Body Weight (MPBW) was used as the primary parameter to monitor weight loss during the study. It was calculated as follows: (Body Weight Tumor Weight)/Baseline Body Weight.times.100. Tumor weight was measured on days 1, 6, 9, 12, 15, 18, 22, 25 and 28 after transplantation. Blood was taken under anesthesia from five mice in each group on days 5 and 13 and all ten mice in each group when euthanized (day 28 in most cases). Blood was analyzed for hematology and serum amyloid A protein (SAA) concentration. An additional group of 10 non-tumor bearing 6 week old, athymic nude male mice had blood samples taken for hematology and SAA concentration estimation to act as a baseline set of values.

Results--Survival

No animals were euthanized or died in any of the antibody Ab1 groups prior to the study termination date of day 28. In the two control groups, 15 animals (719 in the polyclonal human IgG group and 8/10 in the phosphate buffered saline group) were found dead or were euthanized because they were very debilitated (>30% loss of body weight). Median survival time in both control groups was 20 days.

The survival curves for the two control groups and the antibody Ab1 progression (dosed from day 1 of the study) groups are presented in FIG. 5.

The survival curves for the two control groups and the antibody Ab1 regression (dosed from day 8 of the study) groups are presented in FIG. 6.

There was a statistically significant difference between the survival curves for the polyclonal human IgG (p=0.0038) and phosphate buffered saline (p=0.0003) control groups and the survival curve for the six antibody Ab1 groups. There was no statistically significant difference between the two control groups (p=0.97).

Results--Tumor Size

Tumor size in surviving mice was estimated by palpation. For the first 15 days of the study, none of the mice in any group were found dead or were euthanized, and so comparison of tumor sizes between groups on these days was free from sampling bias. No difference in tumor size was observed between the antibody Ab1 progression or regression groups and the control groups through day 15. Comparison of the tumor size between surviving mice in the control and treatment groups subsequent to the onset of mortality in the controls (on day 15) was not undertaken because tumor size the surviving control mice was presumed to be biased and accordingly the results of such comparison would not be meaningful.

As administration of antibody Ab1 promoted survival without any apparent reduction in tumor size, elevated scrum IL-6 may contribute to mortality through mechanisms independent of tumor growth. These observations support the hypothesis that antibody Ab1 can promote cancer patient survivability without directly affecting tumor growth, possibly by enhancing general patient well-being.

Results--Weight Loss

Mean Percent Body Weight (MPBW) (.+-.SEM) versus time is shown in FIG. 27. Compared to controls, mice dosed with Ab1 were protected from weight loss. On day 18, MPBW in control mice was 75%, corresponding to an average weight loss of 25%. In contrast, on the same day, MPBW in Ab-1 treatment groups was minimally changed (between 97% and 103%). There was a statistically significant difference between the MPBW curves for the controls (receiving polyclonal human IgG or PBS) and the 10 mg/kg dosage group (p<0.0001) or 3 mg/kg and 30 mg/kg dosage groups (p<0.0005). There was no statistically significant difference between the two control groups.

Representative photographs of control and Ab1-treated mice (FIG., 28) illustrate the emaciated condition of the control mice, compared to the normal appearance of the Ab1-treated mouse, at the end of the study (note externally visible tumor sites in right flank).

These results suggest that Ab1 may be useful to prevent or treat cachexia caused by elevated EL-6 in humans.

Results Plasma Serum Amyloid A

The mean (.+-.SEM) plasma serum amyloid A concentration versus time for the two control groups and the antibody Ab1 progression (dosed from day 1 of the study) and regression (dosed from day 8 of the study) groups are presented in Table 5 and graphically in FIG. 32.

TABLE-US-00014 TABLE 5 Mean Plasma SAA - antibody Ab1, all groups versus control groups Mean Plasma Mean Plasma Mean Plasma SAA .+-. SEM SAA .+-. SEM SAA .+-. SEM Day 5 Day 13 Terminal Bleed (.mu.g/mL) (.mu.g/mL) (.mu.g/mL) Polyclonal IgG iv 675 .+-. 240 3198 .+-. 628 13371 .+-. 2413 weekly from day 1 (n = 5) (n = 4) (n = 4) PBS iv weekly 355 .+-. 207 4844 .+-. 1126 15826 .+-. 802 from day 1 (n = 5) (n = 5) (n = 3) Ab1 30 mg/kg iv 246 .+-. 100 2979 .+-. 170 841 .+-. 469 weekly from day 1 (n = 5) (n = 5) (n = 10) Ab1 10 mg/kg iv 3629 .+-. 624 3096 .+-. 690 996 .+-. 348 weekly from day 1 (n = 5) (n = 5) (n = 10) Ab1 3 mg/kg iv 106 .+-. 9 1623 .+-. 595 435 .+-. 70 weekly from day 1 (n = 5) (n = 4) (n = 9) Ab1 30 mg/kg iv 375 .+-. 177 1492 .+-. 418 498 .+-. 83 weekly from day 8 (n = 5) (n = 4) (n = 9) Ab1 10 mg/kg iv 487 .+-. 170 1403 .+-. 187 396 .+-. 58 weekly from day 8 (n = 5) (n = 5) (n = 10) Ab1 3 mg/kg iv 1255 .+-. 516 466 .+-. 157 685 .+-. 350 weekly from day 8 (n = 5) (n = 5) (n = 5)

SAA is up-regulated via the stimulation of hIL-6 and this response is directly correlated with circulating levels of hIL-6 derived from the implanted tumor. The surrogate marker provides an indirect readout for active hIL-6. Thus in the two treatment groups described above there are significantly decreased levels of SAA due to the neutralization of tumor-derived hIL-6. This further supports the contention that antibody Ab1 displays in vivo efficacy.

Example 11 RXF393 Cachexia Model Study 2

Introduction

A second study was performed in the RXF-393 cachexia model where treatment with antibody Ab1 was started at a later stage (days 10 and 13 post-transplantation) and with a more prolonged treatment phase (out to 49 days post transplantation). The dosing interval with antibody Ab1 was shortened to 3 days from 7 and also daily food consumption was measured. There was also an attempt to standardize the tumor sizes at the time of initiating dosing with antibody Ab1.

Methods

Eighty, 6 week old, male athymic nude mice were implanted with RXF393 tumor fragments (30-40 mg) subcutaneously in the right flank. 20 mice were selected whose tumors had reached between 270 320 mg in size and divided into two groups. One group received antibody Ab1 at 10 mg/kg i.v. every three days and the other group received polyclonal human IgG 10 mg/kg every 3 days from that time-point (day 10 after transplantation). Another 20 mice were selected when their tumor size had reached 400 527 mg in size and divided into two groups. One group received antibody Ab1 at 10 mg/kg i.v. every three days and the other group received polyclonal human IgG 10 mg/kg every 3 days from that time-point (day 13 after transplantation). The remaining 40 mice took no further part in the study and were euthanized at either day 49, when the tumor reached 4,000 mm.sup.3 or if they became very debilitated (>30% loss of body weight).

Animals were weighed every 3-4 days from day 1 to day 49 after transplantation. Mean Percent Body Weight (MPBW) was used as the primary parameter to monitor weight loss during the study. It was calculated as follows: ((Body Weight Tumor Weight)/Baseline Body Weight).times.100. Tumor weight was measured every 3-4 days from day 5 to day 49 after transplantation. Food consumption was measured (amount consumed in 24 hours by weight (g) by each treatment group) every day from day 10 for the 270-320 mg tumor groups and day 13 for the 400-527 mg tumor groups.

Results--Survival

The survival curves for antibody Ab1 at 10 mg/kg i.v. every three days (270-320 mg tumor size) and for the polyclonal human IgG 10 mg/kg i.v. every three days (270-320 mg tumor size) are presented in FIG. 7.

Median survival for the antibody Ab1 at 10 mg/kg i.v. every three days (270-320 mg tumor size) was 46 days and for the polyclonal human IgG at 10 mg/kg i.v. every three days (270-320 mg tumor size) was 32.5 days (p-0.0071).

The survival curves for the antibody Ab1 at 10 mg/kg i.v. every three days (400-527 mg tumor size) and for the polyclonal human IgG at 10 mg/kg i.v. every three days (400-527 mg tumor size) are presented in FIG. 8. Median survival for the antibody Ab1 at 10 mg/kg i.v. every three days (400-527 mg tumor size) was 46.5 days and for the polyclonal human IgG at 10 mg/kg i.v. every three days (400-527 mg tumor size) was 27 days (p=0.0481).

Example 12 Multi-Dose Pharmacokinetic Evaluation of Antibody Ab1 in Non-Human Primates

Antibody Ab1 was dosed in a single bolus infusion to a single male and single female cynomologus monkey in phosphate buffered saline. Plasma samples were removed at fixed time intervals and the level of antibody Ab1 was quantitated through of the use of an antigen capture ELISA assay. Biotinylated IL-6 (50 .mu.l of 3 .mu.g/mL) was captured on Streptavidin coated 96 well microtiter plates. The plates were washed and blocked with 0.5% Fish skin gelatin. Appropriately diluted plasma samples were added and incubated for 1 hour at room temperature. The supernatants removed and an anti-hFc-HRP conjugated secondary antibody applied and left at room temperature.

The plates were then aspirated and TMB added to visualize the amount of antibody. The specific levels were then determined through the use of a standard curve. A second dose of antibody Ab1 was administered at day 35 to the same two cynomologus monkeys and the experiment replicated using an identical sampling plan. The resulting concentrations are then plot vs. time as show in FIG. 9.

This humanized full length aglycosylated antibody expressed and purified Pichia pastoris displays comparable characteristics to mammalian expressed protein. In addition, multiple doses of this product display reproducible half-lives inferring that this production platform does not generate products that display enhanced immunogenicity.

Example 13 Octet Mechanistic Characterization of Antibody Proteins

IL-6 signaling is dependent upon interactions between IL-6 and two receptors, IL-6R1 (CD126) and gp130 (IL-6 signal transducer). To determine the antibody mechanism of action, mechanistic studies were performed using bio-layer interferometry with an Octet QK instrument (ForteBio; Menlo Park, Calif.). Studies were performed in two different configurations. In the first orientation, biotinylated IL-6 (R&D systems part number 206-IL-001MG/CF, biotinylated using Pierce EZ-link sulfo-NHS-LC-LC-biotin product number 21338 according to manufacturer's protocols) was initially bound to a streptavidin coated biosensor (ForteBio part number 18-5006). Binding is monitored as an increase in signal.

The IL-6 bound to the sensor was then incubated either with the antibody in question or diluent solution alone. The sensor was then incubated with soluble IL-6R1 (R&D systems product number 227-SR-025/CF) molecule. If the IL-6R1 molecule failed to bind, the antibody was deemed to block IL-6/IL-6R1 interactions. These complexes were incubated with gp130 (R& systems 228-GP-010/CF) in the presence of IL-6R1 for stability purposes. If gp130 did not bind, it was concluded that the antibody blocked gp130 interactions with IL-6.

In the second orientation, the antibody was bound to a biosensor coated with an anti-human IgG1 Fe-specific reagent (ForteBio part number 18-5001). The IL-6 was bound to the immobilized antibody and the sensor was incubated with IL-6R1. If the IL-6R1 did not interact with the IL-6, then it was concluded that the IL-6 binding antibody blocked IL-6/IL-6R1 interactions. In those situations where antibody/IL-6/IL-6R1 was observed, the complex was incubated with gp130 in the presence of IL-6R1. If gp130 did not interact, then it was concluded that the antibody blocked IL-6/gp130 interactions. All studies were performed in a 200 .mu.L final volume, at 30 C and 1000 rpm. For these studies, all proteins were diluted using ForteBio's sample diluent buffer (part number 18-5028).

Results are presented in FIG. 10 (A-E) and FIG. 11.

Example 14 Peptide Mapping

In order to determine the epitope recognized by Ab1 on human IL-6, the antibody was employed in a western-blot based assay. The form of human IL-6 utilized in this example had a sequence of 183 amino acids in length (shown below). A 57-member library of overlapping 15 amino acid peptides encompassing this sequence was commercially synthesized and covalently bound to a PepSpots nitrocellulose membrane (JPT Peptide technologies, Berlin, Germany). The sequences of the overlapping 15 amino acid, peptides is shown in FIG. 12 and correspond to SEQ ID NOs: 590-646. Blots were prepared and probed according to the manufacturer's recommendations.

Briefly, blots were pre-wet in methanol, rinsed in PBS, and blocked for ver 2 hours in 10% non-fat milk in PBS/0.05% Tween (Blocking Solution). The Ab1 antibody was used at 1 mg/mL final dilution, and the HRP-conjugated Mouse Anti-Human-Kappa secondary antibody (Southern BioTech #9220-05) was used at a 1:5000 dilution. Antibody dilutions/incubations were performed in blocking solution. Blots were developed using Amersham ECL advance reagents (GE# RPN2135) and chemiluminescent signal documented using a CCD camera (AlphaInnotec). The results of the blots is shown in FIG. 13 and FIG. 14.

The sequence of the form of human IL-6 utilized to generate peptide library is set forth:

TABLE-US-00015 (SEQ ID NO: 1) VPPGEDSKDVAAPHRQPLTSSERIDKQIRYILDGISALRKETCNKSNM CESSKEALAENNLNLPKMAEKDGCFQSGFNEETCLVKIITGLLEFEVY LEYLQNRFESSEEQARAVQMSTKVLIQFLQKKAKNLDAITTPDPTTNA SLLTKLQAQNQWLQDMTTHLILRSFKEFLQSSLRALRQM.

Example 15 Ab1 has High Affinity for IL-6

Surface plasmon resonance was used to measure association rate (K.sub.a), dissociation rate (K.sub.d) and dissociation constant (K.sub.D) for Ab1 to IL-6 from rat, mouse, dog, human, and cynomolgus monkey at 25.degree. C. (FIG. 15A). The dissociation constant for human IL-6 was 4 pM, indicating very high affinity. As expected, affinity generally decreased with phylogenetic distance from human. The dissociation constants of Ab1 for IL-6 of cynomolgus monkey, rat, and mouse were 31 pM, 1.4 nM, and 0.4 nM, respectively. Ab1 affinity for dog IL-6 below the limit of quantitation of the experiment.

The high affinity of Ab1 for mouse, rat, and cynomolgus monkey IL-6 suggest that Ab1 may be used to inhibit IL-6 of these species. This hypothesis was tested using a cell proliferation assay. In brief, each species's IL-6 was used to stimulate proliferation of T1165 cells, and the concentration at which Ab1 could inhibit 50% of proliferation (1050) was measured. Inhibition was consistent with the measured dissociation constants (FIG. 15B). These results demonstrate that Ab1 can inhibit the native IL-6 of these species, and suggest the use of these organisms for in vitro or in vivo modeling of IL-6 inhibition by Ab1.

Example 16 Multi-Dose Pharmacokinetic Evaluation of Antibody Ab1 in Healthy Human Volunteers

Antibody Ab1 was dosed in a single bolus infusion in histidine and sorbitol to healthy human volunteers. Dosages of 1 mg, 3 mg, 10 mg, 30 mg or 100 mg were administered to each individual in dosage groups containing five to six individuals. Plasma samples were removed at fixed time intervals for up to twelve weeks. Human plasma was collected via venipuncture into a vacuum collection tube containing EDTA. Plasma was separated and used to assess the circulating levels of Ab1 using a monoclonal antibody specific for Ab1, as follows. A 96 well microtiter plate was coated overnight with the monoclonal antibody specific for Ab1 in 1.times.PBS overnight at 4.degree. C. The remaining steps were conducted at room temperature. The wells were aspirated and subsequently blocked using 0.5% Fish Skin Gelatin (FSG) (Sigma) in 1.times.PBS for 60 minutes. Human plasma samples were then added and incubated for 60 minutes, then aspirated, then 50 .mu.L of 1 .mu.g/mL biotinylated IL-6 was then added to each well and incubated for 60 minutes. The wells were aspirated, and 50 .mu.L streptavidin-HRP (Pharmingen), diluted 1:5,000 in 0.5% FSG/PBS, was added and incubated for 45 minutes. Development was conducted using standard methods employing TMB for detection. Levels were then determined via comparison to a standard curve prepared in a comparable format.

Average plasma concentration of Ab1 for each dosage group versus time is shown in FIG. 16. Mean AUC and C.sub.max increased linearly with dosage (FIG. 17 and FIG. 18, respectively). For dosages of 30 mg and above, the average Ab1 half-life in each dosage group was between approximately 25 and 30 days (FIG. 19).

Example 17 Pharmacokinetics of Ab1 in Patients with Advanced Cancer

Antibody Ab1 was dosed in a single bolus infusion in phosphate buffered saline to five individuals with advanced cancer. Each individual received a dosage of 80 mg (n=2) or 160 mg (n=3) of Ab1. Plasma samples were drawn weekly, and the level of antibody Ab1 was quantitated as in Example 16.

Average plasma concentration of Ab1 in these individuals as a function of time is shown in FIG. 20. The average Ab1 half-life was approximately 31 days.

Example 18 Unprecedented Half-Life of Ab1

Overall, the average half-life of Ab1 was approximately 31 days in humans (for dosages of 10 mg and above), and approximately 15-21 days in cynomolgus monkey. The Ab1 half-life in humans and cynomolgus monkeys are unprecedented when compared with the half-lives of other anti-IL-6 antibodies (FIG. 21). As described above, Ab1 was derived from humanization of a rabbit antibody, and is produced from Pichia pastoris in an aglycosylated form. These characteristics results in an antibody with very low immunogenicity in humans. Moreover, the lack of glycosylation prevents Ab1 from interacting with the Fc receptor or complement. Without intent to be limited by theory, it is believed that the unprecedented half-life of Ab1 is at least partially attributable to the humanization and/or the lack of glycosylation. The particular sequence and/or structure of the antigen binding surfaces may also contribute to Ab1 's half-life.

Example 19 Ab1 Effect on Hemoglobin Concentration, Plasma Lipid Concentration, and Neutrophil Counts in Patients with Advanced Cancer

Antibody Ab1 was dosed in a single bolus infusion in phosphate buffered saline to eight individuals with advanced cancer (NSCLC, colorectal cancer, cholangiocarcinoma, or mesothelioma). Each individual received a dosage of 80 mg, 160 mg, or 320 mg of Ab1. Blood samples were removed just prior to infusion and at fixed time intervals for six weeks, and the hemoglobin concentration, plasma lipid concentration, and neutrophil counts were determined. Average hemoglobin concentration rose slightly (FIG. 22), as did total cholesterol and triglycerides (FIG. 23), while mean neutrophil counts fell slightly (FIG. 24).

These results further demonstrate some of the beneficial effects of administration of Ab1 to chronically ill individuals. Because IL-6 is the main cytokine responsible for the anemia of chronic disease (including cancer-related anemia), neutralization of IL-6 by Ab1 increases hemoglobin concentration in these individuals. Similarly, as IL-6 is centrally important in increasing neutrophil counts in inflammation, the observed slight reduction in neutrophil counts further confirms that Ab1 inhibits IL-6. Finally, IL-6 causes anorexia as well as cachexia in these patients; neutralization of IL-6 by Ab1 results in the return of appetite and reversal of cachexia. The increase in plasma lipid concentrations reflect the improved nutritional status of the patients. Taken together, these results further demonstrate that Ab1 effectively reverses these adverse consequences of IL-6 in these patients.

Example 20 Ab1 Suppresses Serum CRP in Healthy Volunteers and in Patients with Advanced Cancer

Introduction

Serum CRP concentrations have been identified as a strong prognostic indicator in patients with certain forms of cancer. For example. Hashimoto et al. performed univariate and multivariate analysis of preoperative serum CRP concentrations in patients with hepatocellular carcinoma in order to identify factors affecting survival and disease recurrence (Hashimoto, K., et al., Cancer, 103(9):1856-1864 (2005)). Patients were classified into two groups, those with serum CRP levels >1.0 mg/dL ("the CRP positive group") and those with serum CRP levels <1.0 mg/dL ("the CRP negative group"). The authors identified "a significant correlation between preoperative serum CRP level and tumor size." Id. Furthermore, the authors found that "[t]he overall survival and recurrence-free survival rates in the CRP-positive group were significantly lower compared with the rates in the CRP-negative group." Id. The authors concluded that the preoperative CRP level of patients is an independent and significant predictive indicator or poor prognosis and early recurrence in patients with hepatocellular carcinoma.

Similar correlations have been identified by other investigators. For example, Karakiewicz et al. determined that serum CRP was an independent and informative predictor of renal cell carcinoma-specific mortality (Karakiewicz, P. I., et al., Cancer, 110(6):1241-1247 (2007)). Accordingly, there remains a need in the art for methods and/or treatments that reduce serum C-Reactive Protein (CRP) concentrations in cancer patients, and particularly those with advanced cancers.

Methods

Healthy volunteers received a single 1-hour intravenous (IV) infusion of either 100 mg (5 patients), 30 mg (5 patients), 10 mg (6 patients), 3 mg (6 patients) or 1 mg (6 patients) of the Ab1 monoclonal antibody, while another 14 healthy volunteers received intravenous placebo. Comparatively, 2 patients with advanced forms of colorectal cancer received a single 1-hour intravenous (TV) infusion of 80 mg of the Ab1 monoclonal antibody. No further dosages of the Ab1 monoclonal antibody were administered to the test population.

Patients were evaluated prior to administration of the dosage, and thereafter on a weekly basis for at least 5 weeks post dose. At the time of each evaluation, patients were screened for serum CRP concentration.

Results

Healthy Volunteers

As noted above, serum CRP levels are a marker of inflammation; accordingly, baseline CRP levels are typically low in healthy individuals. The low baseline CRP levels can make a further reduction in CRP levels difficult to detect. Nonetheless, a substantial reduction in serum CRP concentrations was detectable in healthy volunteers receiving all concentrations of the Ab1 monoclonal antibody, compared to controls (FIG. 25). The reduction in serum CRP levels was rapid, occurring within one week of antibody administration, and prolonged, continuing at least through the final measurement was taken (8 or 12 weeks from antibody administration).

Cancer Patients

Five advanced cancer patients (colorectal cancer, cholangiocarcinoma, or NSCLC) having elevated serum CRP levels were dosed with 80 mg or 160 mg of Ab1. Serum CRP levels were greatly reduced in these patients (FIG. 26A). The reduction in serum CRP levels was rapid, with 90% of the decrease occurring within one week of Ab1 administration, and prolonged, continuing at least until the final measurement was taken (up to twelve weeks). The CRP levels of two representative individuals are shown in FIG. 26B. In those individuals, the CRP levels were lowered to below the normal reference range (less than 5-6 mg/1) within one week, Thus, administration of Ab1 to advanced cancer patients can cause a rapid and sustained suppression of serum CRP levels.

Example 21 Ab1 Improved Muscular Strength, Improved Weight, and Reduced Fatigue in Patients with Advanced Cancer

Introduction

Weight loss and fatigue (and accompanying muscular weakness) are very common symptoms of patients with advanced forms of cancer, and these symptoms can worsen as the cancer continues to progress. Fatigue, weight loss and muscular weakness can have significant negative effects on the recovery of patients with advanced forms of cancer, for example by disrupting lifestyles and relationships and affecting the willingness or ability of patients to continue cancer treatments. Known methods of addressing fatigue, weight loss and muscular weakness include regular routines of fitness and exercise, methods of conserving the patient's energy, and treatments that address anemia-induced fatigue and muscular weakness. Nevertheless, there remains a need in the art for methods and/or treatments that improve fatigue, weight loss and muscular weakness in cancer patients.

Methods

Four patients with advanced forms of cancer (colorectal cancer (2), NSCLC (1), cholangiocarcinoma (1) received a single 1-hour intravenous (IV) infusion of either 80 mg or 160 mg of the Ab1 monoclonal antibody. No further dosages of the Ab1 monoclonal antibody were administered to the test population.

Patients were evaluated prior to administration of the dosage, and thereafter for at least 6 weeks post dose. At the time of each evaluation, patients were screened for the following: a.) any change in weight; b.) fatigue as measured using the Facit-F Fatigue Subscale questionnaire a medically recognized test for evaluating fatigue (See, e.g., Cella, D., Lai, Chang, C. H., Peterman, A., & Slavin, M. (2002). Fatigue in cancer patients compared with fatigue in the general population. Cancer, 94(2), 528-538; Cella, U., Eton, D. T., Lai, F J-S., Peterman, A. H & Merkel, D. E. (2002). Combining anchor and distribution based methods to derive minimal clinically important differences on the Functional Assessment of Cancer Therapy anemia and fatigue scales. Journal of Pain & Symptom Management, 24 (6) 547-561); and hand-grip strength (a medically recognized test for evaluating muscle strength, typically employing a handgrip dynamometer).

Results

Weight Change

The averaged data for both dosage concentrations (80 mg and 160 mg) of the Ab1 monoclonal antibody demonstrated an increase of about 2 kilograms of weight per patient over the period of 6 weeks (FIG. 29).

Fatigue

The averaged data for both dosage concentrations (80 mg and 160 mg) of the Ab1 monoclonal antibody demonstrated an increase in the mean Facit-F FS subscale score of at least about 10 points in the patient population over the period of 6 weeks (FIG. 30).

Hand-Grip Strength

The averaged data for both dosage concentrations (80 mg and 160 mg) of the Ab1 monoclonal antibody demonstrated an increase in the mean hand-grip strength of at least about 10 percent in the patient population over the period of 6 weeks (FIG. 31).

Example 22 Ab1 for Prevention of Thrombosis

Prior studies have shown that administration of an anti-IL-6 antibody can cause decreased platelet counts. Emilie, D. et al., Blood, 84(8):2472-9 (1994); Blay et al., Int J Cancer, 72(3):424-30 (1997). These results have apparently been viewed as an indicator of potential danger, because further decreases in platelet counts could cause complications such as bleeding. However, Applicants have now discerned that inhibiting IL-6 restores a normal coagulation profile, which Applicants predict will prevent thrombosis. Decreased platelet counts resulting from inhibition of IL-6 is not a sign of potential danger but rather reflects the beneficial restoration of normal coagulation.

The mechanism by which normal coagulation is restored is believed to result from the interplay between IL-6 and the acute phase reaction. In response to elevated IL-6 levels, as for example in a cancer patient, the liver produces acute phase proteins. These acute phase proteins include coagulation factors, such as Factor II, Factor V, Factor VIII, Factor IX, Factor XI, Factor XII, F/fibrin degradation products, thrombin-antithrombin III complex, fibrinogen, plasminogen, prothrombin, and von Willebrand factor. This increase in coagulation factors may be measured directly, or may be inferred from functional measurements of clotting ability. Antagonists of IL-6, such as Ab1, suppresses acute phase proteins, e.g., Serum Amyloid A (see FIG. 32 and Example 10). Applicants now predict that this suppression of acute phase proteins will restore the normal coagulation profile, and thereby prevent thrombosis. The restoration of normal coagulation may cause a slight drop in platelet counts, but the patient will nonetheless retain normal coagulation ability and thus will not have an increased risk of bleeding. Such a treatment will represent a vast improvement over the available anticoagulation therapies whose usefulness is limited by the risk of adverse side-effects, such as major bleeding.

Applicants contemplate that the same beneficial effects of inhibiting IL-6 will be obtained regardless of the method of inhibition. Suitable methods of inhibiting IL-6 include administration of anti-IL-6 antibodies, antisense therapy, soluble IL-6 receptor, etc. either individually or in combinations.

Example 23 Ab1 Increases Plasma Albumin Concentration in Patients with Advanced Cancer

Serum albumin concentrations are recognized as predictive indicators of survival and/or recovery success of cancer patients. Hypoalbumenia correlates strongly with poor patient performance in numerous forms of cancer. For example, in one study no patients undergoing systemic chemotherapy for metastatic pancreatic adenocarcinoma and having serum albumin levels less than 3.5 g/dL successfully responded to systemic chemotherapy (Fujishiro, M., et al., Hepatogastroenterology, 47(36):1744-46 (2000)). The authors conclude that "[p]atients with . . . hypoalbuminemia . . . might be inappropriate candidates for systemic chemotherapy and might be treated with other experimental approaches or supportive care." Id.

Similarly, Senior and Maroni state that "[t]he recent appreciation that hypoalbuminemia is the most powerful predictor of mortality in end-stage renal disease highlights the critical importance of ensuring adequate protein intake in this patient population." (J. R. Senior and B. J. Maroni, Am. Soc. Nutr. Sci., 129:3135-314S (1999)).

In at least one study, attempts to rectify hypoalbuminemia in 27 patients with metastatic cancer by daily intravenous albumin infusion of 20 g until normal scrum albumin levels (>3.5 g/dL) were achieved had little success. The authors note that "[a]lbumin infusion for the advanced stage cancer patients has limited value in clinical practice. Patients with PS 4 and hypoalbuminemia have poorer prognosis." (Demirkazik, A., et al., Proc. Am. Soc. Clin. Oncol., 21: Abstr 2892 (2002)).

Accordingly, there remains a need in the art for methods and/or treatments that improve serum albumin concentrations in cancer patients and address hypoalbuminemic states in cancer patients, particularly those with advanced cancers.

Methods

Four patients with advanced forms of cancer (colorectal cancer (2), NSCLC (1), cholangiocarcinoma (1) received a single 1-hour intravenous (IV) infusion of either 80 mg or 160 mg of the Ab1 monoclonal antibody. No further dosages of the Ab1 monoclonal antibody were administered to the test population.

Patients were evaluated prior to administration of the dosage, and thereafter for at least 6 weeks post dose. At the time of each evaluation, patients were screened for plasma albumin concentration.

Results

The averaged data for both dosage concentrations (80 mg and 160 mg) of the Ab1 monoclonal antibody demonstrated an increase of about 5 g/L of plasma albumin concentration per patient over the period of 6 weeks (FIG. 33).

Example 24 Ab1 Suppresses Serum CRP in Patients with Advanced Cancer

Serum CRP concentrations have been identified as a strong prognostic indicator in patients with certain forms of cancer. For example, Hashimoto et al. performed univariate and multivariate analysis of preoperative serum CRP concentrations in patients with hepatocellular carcinoma in order to identify factors affecting survival and disease recurrence (Hashimoto, K., et al., Cancer, 103(9):1856-1864 (2005)). Patients were classified into two groups, those with scrum CRP levels >1.0 Trig/dL ("the CRP positive group") and those with serum CRP levels <1.0 mg/dL ("the CRP negative group"). The authors identified "a significant correlation between preoperative serum CRP level and tumor size." Id. Furthermore, the authors found that "[t]he overall survival and recurrence-free survival rates in the CRP-positive group were significantly lower compared with the rates in the CRP-negative group." Id. The authors concluded that the preoperative CRP level of patients is an independent and significant predictive indicator of poor prognosis and early recurrence in patients with hepatocellular carcinoma.

Similar correlations have been identified by other investigators. For example, Karakiewicz et al. determined that serum CRP was an independent and informative predictor of renal cell carcinoma-specific mortality (Karakiewicz, P. I., et al., Cancer, 110(6):1241-1247 (2007)). Accordingly, there remains a need in the art for methods and/or treatments that reduce scrum C-Reactive Protein (CRP) concentrations in cancer patients, and particularly those with advanced cancers.

Methods

One-hundred twenty-four patients with non-small cell lung cancer (NSCLC) were divided into 4 treatment groups. Patients in one group received one 1-hour intravenous (IV) infusion of either placebo (n=31), 80 mg (n=29), 160 mg (n=32), or 320 mg (n=32) of the Ab1 monoclonal antibody every 8 weeks over a 24 week duration for a total of 3 doses. CRP concentration was quantitated by a C-reactive protein particle-enhanced immunoturbidimetric assay using latex-attached anti-CRP antibodies (i.e. Roche CRP Tinaquant.RTM.). Briefly, about 1.0 mL of patient sample serum was collected and stored in a plastic collection tube. Sample was placed into appropriate buffer, and anti-CRP antibody coupled to latex microparticles was added to the sample to start the reaction. These anti-CRP antibodies with conjugated latex microparticles react with antigen in the sample to form an antigen/antibody complex. Following agglutination, this was measured turbidimetrically using a Roche/Hitachi Modular P analizer.

Patients were evaluated prior to administration of the dosage, and thereafter at weeks 2, 4, 8, and 12. At the time of each evaluation, patients were screened for serum CRP concentration.

Results

The averaged data for each dosage concentrations (placebo, 80 mg, 160 mg, and 320 mg) of the Ab1 monoclonal antibody are plotted in FIG. 38. All dosage levels of Ab1 antibody demonstrated an immediate drop in CRP concentrations relative to placebo over the period of 12 weeks. CRP levels displayed breakthrough at 8 weeks post-dosing. The CRP levels fell below 5 mg/1, by week 12. Median values of CRP demonstrated rapid and sustained decreases for all dosage concentrations relative to placebo (FIG. 39). Thus, administration of Ab1 to advanced cancer patients can cause a rapid and sustained suppression of serum CRP levels.

Example 25 Ab1 Suppresses Serum CRP in Patients with Advanced Cancers

Serum CRP concentrations have been identified as a strong prognostic indicator in patients with certain forms of cancer. For example, Hashimoto et al. performed univariate and multivariate analysis of preoperative serum CRP concentrations in patients with hepatocellular carcinoma in order to identify factors affecting survival and disease recurrence (Hashimoto, K., et al., Cancer, 103(9):1856-1864 (2005)). Patients were classified into two groups, those with serum CRP levels >1.0 mg/dL ("the CRP positive group") and those with scrum CRP levels <1.0 mg/dL ("the CRP negative group"). The authors identified "a significant correlation between preoperative serum CRY level and tumor size." Id. Furthermore, the authors found that "[t]he overall survival and recurrence-free survival rates in the CRP-positive group were significantly lower compared with the rates in the CRP-negative group." Id. The authors concluded that the preoperative CRP level of patients is an independent and significant predictive indicator of poor prognosis and early recurrence in patients with hepatocellular carcinoma.

Similar correlations have been identified by other investigators. For example, Karakiewicz et al. determined that scrum CRP was an independent and informative predictor of renal cell carcinoma-specific mortality (Karakiewicz, P. I., et al., Cancer, 110(6):1241-1247 (2007)). Accordingly, there remains a need in the art for methods and/or treatments that reduce serum C-Reactive Protein (CRP) concentrations in cancer patients, and particularly those with advanced cancers.

Methods

Eight patients with various forms of advanced cancer (colorectal (3), NSCLC (1), cholangio (1), and mesothelioma (2)) received a single 1-hour intravenous infusion of either 80 mg (2 patients), 160 mg (3 patients) or 320 mg (3 patients) of the Ab1 monoclonal antibody. No further dosages of the Ab1 monoclonal antibody were administered to the test population.

Patients were evaluated prior to administration of the dosage and thereafter on a weekly basis for at least 8 weeks post dose. At the time of each evaluation, patients were screened for serum CRP concentration. CRP concentration was quantitated by a C-reactive protein particle-enhanced immunoturbidimetric assay using latex-attached anti-CRP antibodies (i.e. Roche CRP Tinaquant.RTM.). Briefly, about 1.0 of patient sample scrum was collected and stored in a plastic collection tube. Sample was placed into appropriate buffer, and anti-CRP antibody coupled to latex microparticles was added to the sample to start the reaction. These anti-CRP antibodies with conjugated latex microparticles react with antigen in the sample to form an antigen/antibody complex. Following agglutination, this was measured turbidimetrically using a Roche/Hitachi Modular P analizer.

Results

Scrum CRP levels were greatly reduced in all patients studied (FIG. 40). The reduction in serum CRP levels was rapid, with approximately 90% of the decrease occurring within one week of Ab1 administration, and prolonged diminished levels continued at least until the final measurement was taken (up to twelve weeks), In all cases except one patient with colorectal cancer, CRP levels fell to at or below the normal reference range (less than 5-6 mg/L) within one week. The colorectal cancer patient achieved similar normal levels by week 4 of the study. Thus, administration of Ab1 to advanced cancer patients can cause a rapid and sustained suppression of serum CRP levels.

Example 26 Ab1 Suppresses Serum CRP in Patients with Rheumatoid Arthritis

Serum CRP concentrations have been identified as a strong prognostic indicator in patients with rheumatoid arthritis. Patients suffering from rheumatoid arthritis with high levels of CRP demonstrated almost universal deterioration. Amos et al., 1 Br, Med. J. 195-97 (1977). Conversely, patients with low CRP levels showed no disease progression, suggesting that sustaining low levels of CRP is necessary for effectively treating rheumatoid arthritis. Id. Tracking of CRP during rheumatoid arthritis treatment regimes of gold, D-penicillamine, chloroquine, or dapsone indicated that radiological deterioration was impeded after the first 6 months of treatment when CRP levels were consistently controlled. Dawes et al., 25 Rheumatology 44-49 (1986). A highly significant correlation between CRP production and radiological progression was identified. van Leeuwen et al., 32 (Supp. 3) Rheumatology 9-13 (1997). Another study revealed that for patients with active rheumatoid arthritis, suppression of abnormally elevated CRP led to improvement in functional testing metrics, whereas sustained CRP elevation associated with deterioration in the same metrics. Devlin et al., 24 J. Rheumatol. 9-13 (1997). No further deterioration was observed without CRP re-elevation, indicating CRP suppression as a viable candidate for rheumatoid arthritis treatment. Id. Accordingly, there remains a need in the art for methods and/or treatments that reduce serum C-Reactive Protein (CRP) concentrations in rheumatoid arthritis patients.

Methods

One-hundred twenty-seven patients with active rheumatoid arthritis and CRP.gtoreq.10 mg/L were divided into 4 treatment groups. Patients in one group received one 1-hour intravenous (IV) infusion of either placebo (n=33), 80 mg (n=32), 160 mg (n=34), or 320 mg (n=28) of the Ab1 monoclonal antibody, once at the start of the 16 week trial and again at week 8. CRP concentration was quantitated by a C-reactive protein particle-enhanced immunoturbidimetric assay using latex-attached anti-CRP antibodies (i.e. Roche CRP Tinaquant.RTM.). Briefly, about 1.0 mL of patient sample serum was collected and stored in a plastic collection tube. Sample was placed into appropriate buffer, and anti-CRP antibody coupled to latex microparticles was added to the sample to start the reaction. These anti-CRP antibodies with conjugated latex microparticles react with antigen in the sample to form an antigen/antibody complex. Following agglutination, this was measured turbidimetrically using a Roche/Hitachi Modular P analizer. Data on CRP concentration was collected every week for the first 4 weeks, every two weeks between weeks 4 and 12, and at the conclusion of the test at week 16.

Results

Serum CRP levels were greatly reduced in all patients studied (FIG. 41). The reduction in scrum CRP levels was rapid, with immediate reduction in CRP levels relative to placebo within one week of Ab1 administration, and prolonged diminished levels continued at least until the final measurement was taken (up to sixteen weeks). In all cases, CRP levels fell to at or below the normal reference range (less than 5 6 mg/L) within one week. Thus, administration of Ab1 to rheumatoid arthritis patients can cause a rapid and sustained suppression of serum CRP levels and presents an effective treatment regime.

Example 27 Ab1 Increases Hemoglobin in Patients with Advanced Cancer

Antibody Ab1 was dosed at 80 mg, 160 mg, or 320 mg of Ab1 in phosphate buffered saline to 93 individuals with non-small cell lung carcinoma. The placebo group of 31 individuals with non-small cell lung carcinoma was dosed with phosphate buffered saline only. Blood samples were removed just prior to dosing (zero week), and at two, four, eight and twelve weeks, and the hemoglobin concentration was determined: Mean hemoglobin concentration rose for those receiving antibody Ab1, while mean hemoglobin concentration of those receiving placebo did not rise after twelve weeks when compared to the concentration just prior to dosing (zero week) (FIGS. 42 and 43).

A subset of the study population began the study with low levels of hemoglobin, defined as a baseline hemoglobin concentration below 11 g/1. Mean hemoglobin concentration rose above 11 g/1 after eight weeks for those receiving antibody Ab1 at dosages of 160 mg and 320 mg, while mean hemoglobin concentration of those receiving antibody Ab1 at dosages of 80 mg or placebo did not rise above 11 g/1 after eight weeks (FIG. 44).

These results further demonstrate some of the beneficial effects of administration of Ab1 to chronically ill individuals. Because IL-6 is the main cytokine responsible for the anemia of chronic disease (including cancer-related anemia), neutralization of IL-6 by Ab1 increases hemoglobin concentration in these individuals.

Example 28 Ab1 Increases Hemoglobin in Patients with Rheumatoid Arthritis

Hemoglobin levels were analyzed in patients with rheumatoid arthritis during treatment with Ab1 antibody. Ab1 antibody was dosed at 80 mg, 160 mg, or 320 mg in phosphate buffered saline to 94 individuals with rheumatoid arthritis. The placebo group of 33 individuals with rheumatoid arthritis was dosed with phosphate buffered saline only. Blood samples were removed just prior to dosing (zero week), and at one, two, three, four, six, eight, ten, twelve, and sixteen weeks, and the hemoglobin concentration was determined. Mean hemoglobin concentration rose for those receiving antibody Ab1, while mean hemoglobin concentration of those receiving placebo did not appreciably rise after sixteen weeks when compared to the concentration just prior to dosing (zero week) (FIG. 45).

These results further demonstrate some of the beneficial effects of administration of Ab1 to chronically ill individuals. Because IL-6 is the main cytokine responsible for the anemia of chronic disease (including cancer-related anemia), neutralization of IL-6 by Ab1 increases hemoglobin concentration.

Example 29 Ab1 Increases Albumin in Patients with Advanced Cancer

Serum albumin concentrations are recognized as predictive indicators of survival and/or recovery success of cancer patients. Hypoalbumenia correlates strongly with poor patient performance in numerous forms of cancer. For example, in one study no patients undergoing systemic chemotherapy for metastatic pancreatic adenocarcinoma and having serum albumin levels less than 3.5 g/dL successfully responded to systemic chemotherapy (Fujishiro, M., et al., Hepatogastroenterology, 47(36): 1744-46 (2000)). The authors conclude that "[p]atients with . . . hypoalbuminemia . . . might be inappropriate candidates for systemic chemotherapy and might be treated with other experimental approaches or supportive care." Id.

Similarly, Senior and Maroni state that "[t]he recent appreciation that hypoalbuminemia is the most powerful predictor of mortality in end-stage renal disease highlights the critical importance of ensuring adequate protein intake in this patient population." (J. R. Senior and B. J. Maroni, Am. Soc. Nutr. Sci., 129:3135-314S (1999)).

In at least one study, attempts to rectify hypoalbuminemia in 27 patients with metastatic cancer by daily intravenous albumin infusion of 20 g until normal serum albumin levels (>3.5 g/dL) were achieved had little success. The authors note that "[a]lbumin infusion for the advanced stage cancer patients has limited value in clinical practice. Patients with PS 4 and hypoalbuminemia have poorer prognosis." (Demirkazik, A., et al., Proc. Am. Soc. Clin. Oncol., 21: Abstr 2892 (2002)).

Accordingly, there remains a need in the art for methods and/or treatments that improve serum albumin concentrations in cancer patients and address hypoalbuminemic states in cancer patients, particularly those with advanced cancers.

Methods

Antibody Ab1 was dosed at 80 mg, 160 mg, or 320 mg of Ab1 in phosphate buffered saline to 93 individuals with non-small cell lung carcinoma. Each individual received a dosage of. The placebo group of 31 individuals with non-small cell lung carcinoma was dosed with phosphate buffered saline only. Blood samples were removed just prior to dosing (zero week), and at two, four, eight and twelve weeks, and the albumin concentration was determined.

Results

Mean albumin concentration rose for those receiving antibody Ab1, while mean albumin concentration of those receiving placebo did not rise after twelve weeks when compared to the concentration just prior to dosing (zero week) (FIG. 46). The change from baseline albumin values for all dosage concentration groups is plotted in FIG. 47.

A subset of the study population began the study with low levels of albumin, defined as a baseline albumin concentration less than or equal to 35 g/L. Mean albumin concentration initially rose with all dosages of antibody Ab1 over placebo, but only patients receiving 160 mg or 320 mg demonstrated sustained albumin levels above 35 g/L ver 8 weeks of the study (FIG. 48). The 80 mg dosage group demonstrated an initial increase, but gradually declined after week 2 and never rose above 35 g/L during the 8 weeks where data was available (Id.).

Example 30 Ab1 Improved Weight and Reduced Fatigue in Patients with Advanced Cancer

Weight loss and fatigue are very common symptoms of patients with advanced forms of cancer, and these symptoms can worsen as the cancer continues to progress. Fatigue and weight loss can have significant negative effects on the recovery of patients with advanced forms of cancer, for example by disrupting lifestyles and relationships and affecting the willingness or ability of patients to continue cancer treatments. Known methods of addressing fatigue and weight loss include regular routines of fitness and exercise, methods of conserving the patient's energy, and treatments that address anemia-induced fatigue. Nevertheless, there remains a need in the art for methods and/or treatments that improve fatigue and weight loss in cancer patients.

Methods

One-hundred twenty-four patients with non-small cell lung cancer (NSCLC) were divided into 4 treatment groups. Patients in one group received one 1-hour intravenous (IV) infusion of either placebo (n=31), 80 mg (n=29), 160 mg (n=32), or 320 mg (n=32) of the Ab1 monoclonal antibody every 8 weeks over a 24 week duration for a total of 3 doses.

Patients were evaluated prior to administration of the dosage, and thereafter for at least 12 weeks post dose. At the time of each evaluation, patients were screened for the following: a.) any change in weight; and b.) fatigue as measured using the Facit-F Fatigue Subscale questionnaire a medically recognized test for evaluating fatigue (See, e.g., Cella, D., Lai, J. S., Chang, C. H., Peterman, A., & Slavin, M. (2002). Fatigue in cancer patients compared with fatigue in the general population. Cancer, 94(2), 528-538; Cella, D., Eton, D. T., Lai, F J-S., Peterman, A. H & Merkel, D. E. (2002). Combining anchor and distribution based methods to derive minimal clinically important differences on the Functional Assessment of Cancer Therapy anemia and fatigue scales. Journal of Pain & Symptom Management, 24 (6) 547-561.).

Results

Weight Change

The averaged weight change data from each dosage concentration group (placebo, 80 mg, 160 mg, and 320 mg) of the Ab1 Monoclonal antibody over 12 weeks is plotted in FIG. 49. The average percent change in body weight from each dosage concentration is plotted in FIG. 50. The averaged lean body mass data for the dosage concentration groups is plotted in FIG. 51.

Fatigue

The averaged fatigue from each dosage concentration group (placebo, 80 mg, 160 mg, and 320 mg) of the Ab1 monoclonal antibody demonstrated increases in the mean Facit-F FS subscale score for some of the dosage concentration groups in the patient population over the period of 8 weeks (FIG. 52). The change from baseline Facit-F subscale score is plotted in FIG. 53.

Example 31 Ab1 Decreases D-Dimer Levels in Patients with Advanced Cancer

D-dimer concentrations are recognized as useful diagnostic tools in predicting risks of thrombotic events in patients. (Adam et al., 113 Blood 2878-87 (2009)) Patients that are negative for D-dimer have a low probability for thrombosis. For example, D-dimer analysis can rule out suspected lower-extremity deep-vein thrombosis in patients. (Wells et al., 349 N. Engl. J. Med. 1227-35 (2003)) Clinical evaluation in combination with negative D-dimer test can effectively lower the instance of pulmonary embolism to 0.5%. (Van Belle et al., 295 JAMA 172-79 (2006); Kruip et al., 162 Arch. Intern. Med. 1631-35 (2002); Wells et al., 135 Ann. Intern. Med. 98-107 (2001))

D-dimer analysis may have utility in tracking the progress of treating coagulation disorders. One study indicated that anticoagulation treatment for acute venous thromboembolism resulted in a gradual decline in D-dimer concentrations. (Adam et al., 113 Blood 2878-87 (2009); Schutgens et al., 144 J. Lab. Clin. Med. 100-07 (2004)) This discovery led to the conclusion that D-dimer levels monitoring could be used to assess treatment responsiveness. (Adam et al., 113 Blood at 2883)

For patients with cancer, D-dimer analysis may have additional significance, as cancer increases the prevalence of thrombosis. (Adam et al., 113 Blood 2878-87 (2009)) One study with oncology patients indicated that D-dimer concentrations have a high negative predictive value and high sensitivity in diagnosing pulmonary embolism. (King et al., 247 Radiology 854-61 (2008)) Deep-vein thrombosis can similarly be excluded for cancer patients with low probability of developing deep-vein thrombosis and a negative test for D-dimer, although such a combination is less likely for oncology patients, (Lee et a/., 123 Thromb. Res. 177-83 (2008)) A higher threshold for a negative D-dimer result may be necessary in cancer patients. (Righini et al., 95 Haemost. 715-19 (2006))

Accordingly, there remains a need in the art for methods and/or treatments of thrombosis that improve D-dimer concentrations in cancer patients and address elevated D-dimer states in cancer patients, particularly those with advanced cancers.

Methods

One-hundred twenty-four patients with non-small cell lung cancer (NSCLC) were divided into 4 treatment groups. Patients in one group received one 1-hour intravenous (IV) infusion of either placebo (n=31), 80 mg (n=29), 160 mg (n=32), or 320 mg (n=32) of the Ab1 monoclonal antibody every 8 weeks over a 24 week duration for a total of 3 doses. Data on D-dimer concentration was collected for the first 8 weeks of treatment. D-dimer data concentration was quantitated by a D-dimer immunoturbidimetric assay. Briefly, the assay is based on the change in turbidity of a microparticle suspension that is measured by photometry. About 1.5 mL of patient sample sodium citrate plasma was collected and stored in a plastic collection tube. A suspension of latex microparticles, coated by covalent bonding with monoclonal antibodies specific for D-dimer, was mixed with the test plasma whose D-dimer level was to be assayed. Antigen-antibody reactions leading to an agglutination of the latex microparticles induced an increase in turbidity of the reaction medium. This increase in turbidity was reflected by an increase in absorbance, the latter being measured photometrically using a STAGO STA analyzer. The increase in absorbance was a function of the D-dimer level present in the test sample.

Results

The averaged data for each dosage concentrations (placebo, 80 mg, 160 mg, and 320 mg) of the Ab1 monoclonal antibody are plotted in FIG. 54. Error bars were omitted from the graph for clarity purposes. The percent change from baseline in D-dimer concentration is plotted in FIG. 55. All dosage levels of Ab1 antibody demonstrated a drop in D-dimer levels over placebo over the period of 8 weeks.

Example 32 Ab1 Efficacy and Safety in Patients with Advanced NSCLC

The primary objective of this study was to determine the efficacy and safety of ALD518 or humanized Ab1 in patients with advanced NSCLC.

Methods:

124 patients (pts) with NSCLC, ECOG 0-3, weight loss in the preceding 3 months of >5% body weight, hemoglobin (Hb)>7 g/dL, and C-reactive protein (CRP)>10 mg/L were dosed. Pts were randomized to 1 of 4 groups (n-30/group). Placebo or ALD518 80 mg, 160 mg, or 320 mg was administered intravenously every 8 weeks. Pts were followed up for 24 weeks. Data included hematology, clinical chemistry, CRP and adverse events (AEs).

Results:

29 pts completed the study treatments and evaluations, 38 failed to complete every visit, 52 died of progressive disease, and 5 withdrew because of adverse events. There were no dose limiting toxicities (DLTs) or infusion reactions. 84 pts had serious AEs of which 1 was deemed to be possibly related to administration of ALD518 (rectal hemorrhage). The mean (.+-.SD) values for Hb, hematocrit (Hct), mean corpuscular Hb (MCH), and albumin are below:

TABLE-US-00016 Hb Hct MCH Albumin n (g/dL) (%) (pg) (g/L) ALD518 Pre-dose 93 11.5 (.+-.2.1) 37.9 (.+-.6.2) 28.4 (.+-.2.8) 37.3 (.+-.5.3) (pooled) Week 4 69 13.1 (+1.6).sup.a 42.5 (+5.0).sup.a 29.2 (.+-.2.5).sup.a 43.6 (.+-.4.7).sup.a Week 12 39 13.4 (.+-.1.6).sup.a 42.5 (.+-.4.7).sup.b 29.8 (+2.8).sup.a 45.2 (.+-.4.5).sup.a Placebo Pre-dose 31 12.2 (.+-.1.8) 39.0 (.+-.5.9) 29.0 (.+-.2.8) 37.5 (.+-.5.7) Week 4 29 11.8 (.+-.2.0) 39.5 (.+-.6.4) 28.0 (.+-.2.8).sup.c 37.3 (.+-.6.8) Week 12 21 12.0 (.+-.2.5) 39.6 (.+-.7.4) 27.8 (.+-.3.0).sup.c 37.0 (.+-.7.5) .sup.ap < 0.0001 .sup.bp = 0.0002 .sup.cp .ltoreq. 0.001 (paired t-test compared to pre-dose)

38/93 pts treated ALD518 and 10/31 given placebo has a pre-dose Hb.ltoreq.11 g/dL. 24 of these pts on ALD518 and 7 of these pts on placebo remained in the study at week 4. 14/24 pts on ALD518 and 0/7 on placebo had raised their Hb from .ltoreq.11 g/dL to .gtoreq.12 g/dL.

Conclusion:

ALD518 increased Hb, Hct, MCH and albumin in NSCLC pts and raised Hb to .gtoreq.12 g/dL in 58% of pts with a Hb.ltoreq.11 g/dL at baseline. This further indicates that ALD518 can be administered as a non-crythropoietic stimulating agent for treating cancer-related anemia.

Example 33 Ab1 Achieved ACR 20/50/70 in Patients with Rheumatoid Arthritis

Rheumatoid arthritis is a chronic, systemic inflammatory disorder that principally attack synovium of joints. The disease causes painful and potentially disabling inflammation, with onset typically occurring between 40 and 50 years of age. Interpretation of drug treatment efficacy in rheumatoid arthritis is made difficult by the myriad of subjective and objective assessment tools made available over the years. The American College of Rheumatology ("ACR") released a standardized set of rheumatoid arthritis measures to facilitate evaluation of improvement of the disease in clinical trials. Felson et al., 36 Arthritis & Rheumatism 729-40 (1993).

Methods

One-hundred twenty-seven patients with active rheumatoid arthritis and CRP.gtoreq.10 mg/L were divided into 4 treatment groups. Patients in one group received one 1-hour intravenous (IV) infusion of either placebo (n=33), 80 mg (n=32), 160 mg (n=34), or 320 mg (n=28) of the Ab1 monoclonal antibody, once at the start of the 16 week trial and again at week 8. Data on CRP concentration was collected every week for the first 4 weeks, every two weeks between weeks 4 and 12, and at the conclusion of the test at week 16.

Assessment under the standardized protocols from the American College of Rheumatology were employed in determining the percentage of improvement of patients during the clinical trial and conducted by a person trained in the ordinary art of evaluating rheumatoid arthritis. The evaluation was based upon activity measures, including tender joint count, swollen joint count, the patient's assessment of pain, the patient's and physician's global assessments of disease activity, and laboratory evaluation of either erythrocyte sedimentation rate or CRP level. Id. The patient's assessment of pain was based upon the Stanford Health Assessment Questionnaire Disability Index (HAQ DI), Patients that achieve a 20% increase in activity measures for rheumatoid arthritis during a clinical trial are categorized as achieving ACR 20. Similarly, patients achieving 50% and 70% improvements are categorized as ACR 50 and ACR 70, respectively.

Results

A significant portion of patients suffering from rheumatoid arthritis achieved ACR 20 or greater during the course of the study (FIG. 56). Patients observed rapid improvement in systems within the first 4 weeks of the study, as welt as continued, steady improvement throughout the course of the 16 week evaluation (FIGS. 57, 58, and 59). The greatest results where exhibited by patients receiving the 320 mg dosage level, with 43% achieving ACR 70 status during the study (FIG. 59).

Analysis of the individual components of the ACR evaluation demonstrated gains in every component (FIG. 60). HAQ DI scores demonstrated clinically meaningful change over placebo during the course of the evaluation (FIG. 61). Serum CRP levels were greatly reduced in all patients studied (FIG. 61). The reduction in serum CRP levels was rapid, with immediate reduction in CRP levels relative to placebo within one week of Ab1 administration, and prolonged diminished levels continued at least until the final measurement was taken (up to sixteen weeks). In all cases, CRP levels fell to at or below the normal reference range (less than 5-6 mg/L) within one week. Thus, administration of Ab1 can cause a rapid and sustained improvement rheumatoid arthritis patients, as evidenced by the significant improvement in ACR scores during clinical evaluation, and presents an effective treatment regime.

Example 34 Ab1 Achieved Improved DAS28 and EULAR Scores in Patients with Rheumatoid Arthritis

Introduction

Rheumatoid arthritis is a chronic, systemic inflammatory disorder that principally attack synovium of joints. The disease causes painful and potentially disabling inflammation, with onset typically occurring between 40 and 50 years of age. Interpretation of drug treatment efficacy in rheumatoid arthritis is made difficult by the myriad of subjective and objective assessment tools made available over the years. The American College of Rheumatology ("ACR") released a standardized set of rheumatoid arthritis measures to facilitate evaluation of improvement of the disease in clinical trials. Felson et al., 36 Arthritis & Rheumatism 729-40 (1993).

Inflammatory activity associated with rheumatoid arthritis is measured using numerous variables through validated response criteria such as Disease Activity Score (DAS), DAS28 and EULAR. The DAS is a clinical index of rheumatoid arthritis disease activity that combines information from swollen joints, tender joints, the acute phase response, and general health. Fransen, J., et al., Clin. Exp. Rheumatol., 23 (Suppl. 39): S93-599 (2005). The DAS 28 is an index similar to the original DAS, but utilizes a 28 tender joint count (range 0-28), a 28 swollen joint count (range 0-28), ESR (erythrocyte sedimentation rate), and an optional general health assessment on a visual analogue scale (range 0-100). Id. The European League against Rheumatism (EULAR) response criteria classify patients using the individual amount of change in the DAS and the DAS value (low, moderate, high) reached into one of the following classifications: Good; Moderate; or Non-Responders. Id.

Methods

One-hundred twenty-seven patients with active rheumatoid arthritis were divided into 4 treatment groups. Patients in one group received one 1-hour intravenous (IV) infusion of either placebo (n=33), 80 mg (n=32), 160 mg (n=34), or 320 mg (n=28) of the Ab1 monoclonal antibody, once at the start of the 16 week trial and again at week 8. Data on the DAS28 and EULAR scores was collected every week for the first 4 weeks, every two weeks between weeks 4 and 12, and at the conclusion of the test at week 16. Assessment under the standardized DAS28 and EULAR protocols were employed in determining the respective scores of patients during the clinical trial and conducted by a person trained in the ordinary art of evaluating rheumatoid arthritis.

Results

Patients receiving 80 mg, 160 mg or 320 mg of Ab1 demonstrated improved DAS28 scores relative to those patients receiving placebo over the course of 16 weeks, as presented in FIG. 62 as a mean change from the baseline DAS28 score. Furthermore, a significant percentage of patients receiving 80 mg, 160 mg or 320 mg of Ab1 achieved "Good" or "Moderate" classifications relative to those patients receiving placebo over the course of 16 weeks. (FIG. 63).

Thus, administration of Ab1 can result in improved DAS28 and EULAR scores in rheumatoid arthritis when compared to those patients receiving placebo.

Example 35 Safety, Pharmacokinetics (PK), and Pharmacodynamics ((PD) of Ab1 in Human Subjects

As described herein a humanized antibody derived from Ab1 (humanized Ab1 or ALD518) containing the variable heavy and light sequences in SEQ ID NO:19 and 20 was administered to rheumatoid arthritis patients. This antibody is a humanized, asialated, IgG1 monoclonal antibody against IL-6 which has been shown to have a half-life (t1/2) of approximately 30 days in humans. In studies in patients with RA, intravenous (IV) with this antibody (humanized Ab1) has demonstrated: efficacy over 16 weeks with rapid American College of Rheumatology (ACR) responses; Complete and durable suppression of C-reactive protein (CRP); Good tolerability, and a safety profile consistent with the biology of IL-6 blockade. This humanized antibody binds to IL-6 with high affinity, preventing interaction and signalling mediated via IL-6R. Rapid and significant treatment responses have been demonstrated with intravenous (IV) administration of humanized Ab1 in patients with RA In this example we study the safety, pharmacokinetics and pharmacodynamics of subcutaneous (SC) administration of humanized Ab1 in healthy subjects.

The objective of this study was to assess the safety, pharmacokinetics (PK) and pharmacodynamics (PD) of a single SC injection of this humanized antibody in healthy male subjects.

Methods:

In this Phase I, double-blind, placebo-controlled study, 27 subjects were randomized 2:1 to receive a single dose of humanized Ab1 or placebo in the following groups: humanized Ab1 50 mg SC, humanized Ab1 100 mg SC or humanized Ab1 100 mg IV (n=6 active and n=3 placebo per group). The primary objective was to assess safety of SC humanized Ab1 versus placebo over 12 weeks. Plasma concentrations of humanized Ab1 and scrum concentrations of C-reactive protein (CRP) were assessed as secondary objectives. Assessments were performed daily in Week 1 and then on Day 10, Weeks 2, 4, 6 and 8, and then monthly to Week 12. The study was unblinded at Week 12, and humanized Ab1 subjects were monitored to Week 24.

Study Design and Population

The study included 27 healthy male subjects (aged 18-65 years). Subjects were dosed in three treatment groups of nine subjects each, randomized 2:1 to receive a single dose of humanized Ab1 or placebo on Day 1 (FIG. 64). Humanized Ab1 treatments per group were: humanized Ab1 TV 100 mg infusion over 60 minutes humanized Ab1 SC 50 mg injection (1 mL) humanized Ab1 100 mg injection (1 mL) The study was unblinded at Week 12, after which placebo subjects discontinued the trial and BMS-945429 subjects were monitored to Week 24 (FIG. 64). Safety and Immunogenicity Assessments

The primary objective of the study was to assess the safety of SC humanized Ab1 compared with placebo over 12 weeks. Safety was monitored over 12 weeks for all subjects. The study was unblinded at Week 12, and Humanized Ab1 subjects were monitored to Week 24.

Laboratory safety tests were performed pre-dose at screening and Day -1, and post dose on Days 2 and 7, Weeks 2, 4, 6, 8 and 12 for all subjects, and Weeks 16, 20 and 24 post-dose for those randomized to Humanized Ab1. Anti-Humanized Ab1 antibodies were measured by enzyme-linked immunosorbent assay (ELISA), Blood samples were collected at Day 1 (pre-dose) and Week 12 post-dose for all subjects, and Week 24 post-dose for those randomized to Humanized Ab1.

Pharmacokinetic and Pharmacodynamic Assessments

Plasma Humanized Ab1 and scrum CRP concentrations were assessed by ELISA. For all subjects, samples were collected at screening, pre-dose on Day 1, and post-dose on Days 2 and 7 and Weeks 2, 4, 6, 8 and 12. For subjects randomized to Humanized Ab1, further samples were collected at Weeks 16, 20 and 24 post-dose.

Statistical Analysis

All subjects who received a dose of Humanized Ab1 or placebo were included in the safety analysis. All subjects who received a dose of Humanized Ab1 or placebo were included in PD and immunogenicity analyses. All subjects who received a dose of Humanized Ab1 were included in PK analyses (n=18). All PK samples for placebo subjects were confirmed as below quantification.

Descriptive statistics were generated for baseline demographics, safety data, plasma Humanized Ab1 parameters and serum CRP concentrations. Wilcoxon Rank Sum test was used to compare CRP concentrations for Humanized Ab1 treatments versus placebo.

Results:

Summary

Over 24 weeks, there were no deaths or serious AEs, and no withdrawals due to AEs. Nearly all subjects (89%) experienced AEs, which were mild or moderate except one event of severe gastroenteritis in the Humanized Ab1 SC 50 mg group. Injection site reactions occurred in 5/12 Humanized Ab1 SC subjects, 1/6 placebo SC subjects and 1/3 placebo IV subjects (none were reported in Humanized Ab1 IV subjects). These were mild except one case of moderate erythema and pruritis in the Humanized Ab1 100 mg SC group. Increases in direct bilirubin and neutrophil counts below the limit of normal were more common in subjects receiving Humanized Ab1 than placebo; all were CTC Grade 1 or 2. The half life of Humanized Ab1 was similar across all groups (mean range: 30.7-33.6 days). The median T.sub.max of Humanized Ab1 was longer after SC (.about.1 week) than after IV administration (end of infusion). The PK of SC Humanized Ab1 was dose-proportional in terms of AUC and C.sub.max at doses of 50 mg and 100 mg. Based on AUC.sub.0 .infin. (day*.mu.g/mL) of 237, 452 and 764 for the Humanized Ab1 50 mg SC, 100 mg SC and 100 mg IV groups, respectively, the bioavailability of Humanized Ab1 was .about.60% for the SC versus IV groups. Subjects receiving Humanized Ab1 experienced rapid and sustained reductions in serum CRP (FIG. 66).

Subject Disposition and Baseline Demographics

A total of 27 subjects were enrolled and completed the study (n=18 Humanized Ab1 and n=9 placebo). No subjects were withdrawn for any reason.

All subjects were male; 23/27 subjects were Caucasian and 4/27 were Asian. Mean age was 29 (range 20-59) and was similar across the groups. Mean height and weight were also generally comparable across groups, although the IV placebo group were slightly lighter.

Safety and Immunogenicity to Week 12 for Humanized Ab1 and Placebo

A summary of safety is presented in FIG. 67. For the SC Humanized Ab1 groups, a total of 11/12 (91%) patients experienced an adverse event (AE) compared with:

6/6 (100%) for the IV Humanized Ab1 group;

4/6 (66.6%) for the SC placebo group; and

3/3 (100%) for the IV placebo group.

Across groups: No deaths or serious AEs were reported and there were no withdrawals due to AEs. Most AEs were mild or moderate in intensity. One case of gastroenteritis in a SC Humanized Ab1 50 mg subject was considered severe, but not serious, and not related to study medication. N anti-Humanized Ab1 antibodies were detected in any subject during this period. Injection Site Reactions

Injection site reactions were reported in 26% (7/27) of subjects, and all occurred prior to Week 12 (FIG. 68). Injection site reactions occurred in 5/12 SC Humanized Ab1 subjects and 1/6 SC placebo subjects. In the IV groups, 0/6 Humanized Ab1 subjects and 1/3 placebo subjects experienced injection site reactions. All injection site reactions were mild except in one SC Humanized Ab1 100 mg subject with moderate injection site erythema and pruritis. No injection site reactions occurred after Week 12 in any of the Humanized Ab1 groups. Infusion site reactions were reported in 0/6 subjects receiving IV Humanized Ab1 and 1/3 IV placebo subjects (infusion site pruritis)

Clinical Laboratory Evaluations

FIG. 69 shows incidences of increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and bilirubin levels across the Humanized Ab1 and placebo groups. All ALT and AST levels were Grade 1 by the Common Terminology Criteria for Adverse Events (CTCAE), and no levels were .gtoreq.3 times the upper limit of normal (ULN). All increases in total and direct bilirubin were CTCAE Grade 1 or 2 and no subject met criteria for drug-induced liver damage. Only one subject (SC Humanized Ab1 100 mg group) had total bilirubin out of range (26 .mu.mol/L, range 0-24 .mu.mol/L), at Week 24.

Sporadic decreases in neutrophil and platelet counts were also observed in the Humanized Ab1 and placebo groups (FIG. 69). Neutrophil counts below the lower limit of normal were more common in subjects receiving Humanized Ab1 than placebo but all decreases were CTCAE Grade 1 or 2. Only one subject (SC Humanized Ab1 50 mg group) had consistent mild neutropenia to Week 24 (1.6.times.10.sup.9/L at Week 24). Reductions in platelet counts were all CTCAE Grade 1 (lowest level 134.times.10.sup.9/L) and no subject had a low platelet count past Week 8.

Pharmacokinetics

Bioavailability of Humanized Ab1 was 60% for SC Humanized Ab1 50 and 100 mg versus IV Humanized Ab1 100 mg groups based on the mean AUC.sub.0-.infin. (FIG. 70). The half-life of Humanized Ab1 was similar across all groups (mean range: 30.7-33.6 days) (FIG. 70). Peak plasma concentration (C.sub.max) of SC Humanized Ab1 was reduced as compared to IV (FIG. 65). Median time to maximum plasma concentration (T.sub.max) of Humanized Ab1 was longer after SC Humanized Ab1 (at approximately one week) than after IV Humanized Ab1 administration (at approximately the end of infusion).

Pharmacodynamics

CRP levels were reduced in all subjects who received Humanized Ab1 irrespective of dose or administration route. (FIGS. 66 and 71) From Weeks 4 to 12, CRP levels were significantly lower in subjects who received Humanized Ab1 compared with placebo (unadjusted p-value <0.5; FIG. 66). In Humanized Ab1 subjects, CRP levels were lowered to <20% of pre-dose levels in:

72% (13/18) of subjects at Week 1;

73% (11/15) of subjects at Week 12; and

56% (10/18) of subjects at Week 24.

Conclusions:

In this Phase I study, the anti-IL-6 antibody Humanized Ab1 was generally well tolerated when administered in a single SC dose in healthy male subjects. Injection site reactions were generally mild. No anti-Humanized Ab1 antibodies were detected. Changes in liver enzymes, neutrophil and platelet counts were reversible. The bioavailability of SC Humanized Ab1 was approximately 60% of that observed with IV Humanized Ab1. The half-life of Humanized Ab1 was approximately 30 days, irrespective of route of administration. These data concur with previous data using IV Humanized Ab1. Subcutaneous Humanized Ab1 led to rapid and large reductions in scrum CRP. Reductions in CRP observed during the first 12 weeks of the study were sustained over 24 weeks of assessment. These preliminary data support the continued development and evaluation of SC Humanized Ab1 for the treatment of patients with RA.

In summary, in this Phase I study, the anti-IL-6 antibody Humanized Ab1 was well tolerated when administered in a single SC dose; injection site reactions were generally mild. The bioavailability of SC Humanized Ab1 was 60% of IV Humanized Ab1, and the half life was 30 days. Rapid and significant reductions in CRP were observed, which were sustained over 24 weeks of assessment.

Example 36 Effect of Ab1 on DAS28-Assessed Disease Activity

As discussed above, ALD518* is an asialated, humanized anti-IL-6 monoclonal antibody with a half-life of .about.30 days containing the humanized variable heavy and light sequences contained in SEQ ID NO:19 and 20. These humanized heavy and light sequences are derived from a parent rabbit antibody that specifically binds human IL-6 which antibody is referred to in said incorporated application as Ab1. ALD518 binds to IL-6 with high affinity, preventing interaction and signalling mediated via soluble and membrane-bound IL 6R, Rapid and significant ACR responses have been demonstrated with ALD518* in patients with RA. In this example we report the impact of ALD518 on DAS28-assessed disease activity over 16 weeks.

Methods:

Patients with active RA and an inadequate response to MTX were randomized 1:1:1:1 to intravenous ALD518* 80, 160 or 320 mg or placebo during this 16-week, double-blind, placebo-controlled Phase II study. Patients received two IV infusions of ALD518 (Day 1 and Week 8), while continuing on stable doses of MTX. The primary efficacy endpoint was the proportion of patients achieving ACR20 at Week 12; disease activity was assessed via Disease Activity Score (DAS28) based on C-reactive protein (CRP) as a secondary endpoint. The proportion of patients achieving DAS28-defined remission (score <2.6), low disease activity state (LDAS; score .ltoreq.3.2) and good EULAR responses (current DAS28 .ltoreq.3.2 and improvement from baseline >1.2) were assessed for the modified intent-to-treat population, and are presented for patients with available data (as observed). P-values are based on Chi-square tests.

Results:

Of 127 randomized and treated patients, 116 completed the trial. At baseline, mean age was 52.3 years and RA duration was 6.8 years. At Weeks 4, 12 and 16, the proportion of patients achieving LDAS and remission was greater than placebo for all ALD518* doses; differences were significant versus placebo (p<0.05) for all assessments except ALD518* 80 mg at Week 4 (p=0.056). Similarly, EULAR responses were significantly better for all ALD518* doses versus placebo (p<0.01) at Weeks 4, 12 and 16. There was a trend toward greater responses with higher ALD518* doses.

TABLE-US-00017 Proportion of patients achieving DAS28-defined remission, LDAS and good EULAR responses ALD518* ALD518* ALD518* Placebo 80 mg 160 mg 320 mg -- (N = 32) (N = 34) (N = 28) (N = 33) DAS28-defined remission Week 4 10.0 8.8 17.9 0 Week 12 17.2 21.2 34.6 3.3 Week 16 13.8 28.1 44.0 0 LDAS Week 4 10.0 23.5 28.6 0 Week 12 20.6 33.3 46.1 6.6 Week 16 20.7 50.0 52.0 3.4 Good EULAR response Week 4 10.0 23.5 28.6 0 Week 12 20.7 33.3 46.2 6.7 Week 16 20.7 50.0 52.0 3.4 DAS28 = Disease Activity Score 28; LDAS = low disease activity state

SAEs were reported in two ALD518 patients (both had significant increases in liver enzymes, and discontinued treatment). Overall, elevations in liver enzymes >2.times.ULN occurred in 17% of ALD518*-versus 0% placebo-treated patients; the frequency was highest in the 320 mg dose group. Modest increases in total cholesterol were observed (mean increase by Week 16=1.1 mmol/L for ALD518* versus 0.2 mmol/L for placebo). Nine ALD518 patients had transient Grade II and two had transient Grade III neutropenias. There were no serious infections or infusion reactions in any treatment group, and no evident immunogenicity.

Conclusions:

In this Phase II study, the novel IL-6 inhibitor ALD518 resulted in rapid and significant improvements in disease activity sustained over 16 weeks of assessment in patients with RA and an inadequate response to MTX. ALD518 was well tolerated, with a safety profile consistent with the biology of IL-6 blockade.

Example 37 Ab1 Administration

Methods:

Patients with active RA were randomized into a 16 week, double-blind, placebo-controlled trial comparing multiple iv infusions of ALD518 (80, 160 or 320 mg). Patients received an infusion every 8 weeks and were maintained on a stable dose of MTX throughout the trial. Assessments included ACR 20/50/70 responses and DAS28. All patients were evaluated for safety. For early withdrawals, LOCF analysis was used for continuous variables and non-responder imputation for categorical variables.

Results:

132 patients were randomized; 127 were dosed. Mean disease duration was 6.6 years; mean DAS28 score was 6.2 and mean HAQ-DI was 1.72. 11 patients did not complete the 16-week trial: 320 mg-3 160 mg-1, 80 mg-3, placebo-4: 4 discontinued due to adverse events (80 mg-2, 320 mg-2), with 2 SAEs (80 mg-1, 320 mg-1). Elevations in liver enzymes (LFTs)>2.times.ULN were observed in 17% ALD518 versus 0% placebo. There were modest increases in total cholesterol (mean increase by week 16=1.1 mmol/L ALD518 versus 0.2 mmol/L placebo). 9 patients on ALD518 had transient grade 2 neutropenias; 2 pts transient grade 3 neutropenias. There were no serious infections reported in any treatment group. Infusions of ALD518 were well tolerated without infusion reactions or evident immunogenicity. At weeks 4 and 16, ACR responses (non responder imputation analysis) and improvements in DAS28 scores were:

TABLE-US-00018 Week 4 80 mg (n = 32) 160 mg (n = 34) 320 mg (n = 28) PBO + MTX (n = 33) ACR20 50% (16)* 56% (19)* 71% (20)* 23% (8) ACR50 9% (3) 15% (5) 29% (8).dagger. 3% (1) ACR70 6% (2) 0% (0) 11% (3) 0% (0) Mean .DELTA. DAS28 -1.8 -2.1 -2 -0.6 *p.English Pound.0.04; .dagger.p = 0.009 Week 16 80 mg (n = 32) 160 mg (n = 34) 329 mg (n = 28) PBO + MTX (n = 33) ACR20 75% (24)* 65% (22)* 82% (23)* 36% (12) ACR50 41% (13)* 41% (14)* 50% (140* 15% (5) ACR70 22% (7).dagger. 18% (6).dagger-dbl. 43% (12)* 6% (2) Mean .DELTA. DAS28 -2.7 -2.7 -3.2 -1.1 *p.English Pound.0.03 .dagger.p = 0.08 .dagger-dbl.p = 0.26

Conclusion:

ALD518 or humanized Ab1 is the first mAb to IL-6, as opposed to an anti-IL-6 receptor mAb, to show a significant, rapid and sustained improvement in disease activity in RA. ALD518 in doses ranging from 80 to 320 mg given as 2 IV infusions to pts with active RA was well tolerated with increases in LFTs and total cholesterol and transient neutropenia observed in some patients. There were no infusion reactions associated with administration of ALD518 and no detectible immunogenicity.

TABLE-US-00019 SEQUENCE LISTING The biological sequences referenced herein are provided below: SEQ ID NO: 1 VPPGEDSKDVAAPHRQPLTSSERIDKQIRYILDGISALRKETCNKSNMCESSKEALAENNLNLPKMAEKDGC FQSGFNEETCLVKIITGLLEFEVYLEYLQNRFESSEEQARAVQMSTKVLIQFLQKKAKNLDAITTPDPTTNAS LLTKLQAQNQWLQDMTTHLILRSFKEFLQSSLRALRQM SEQ ID NO: 2 MDTRAPTQLLGLLLLWLPGARCAYDMTQTPASVSAAVGGTVTIKCQASQSINNELSWYQQKPGQRPKLLI YRASTLASGVSSRFKGSGSGTEFTLTISDLECADAATYYCQQGYSLRNIDNAFGGGTEVVVKRTVAAPSVFI FPPSDEQLKSGTASVVCLLNN SEQ ID NO: 3 METGLRWLLLVAVLKGVQCQSLEESGGRLVTPGTPLTLTCTASGFSLSNYYVTWVRQAPGKGLEWIGIIYG SDETAYATWAIGRFTISKTSTTVDLKMTSLTAADTATYFCARDDSSDWDAKFNLWGQGTLVTVSSASTKG PSVFPLAPSSKSTSGGTAALGCLVK SEQ ID NO: 4 QASQSINNELS SEQ ID NO: 5 RASTLAS SEQ ID NO: 6 QQGYSLRNIDNA SEQ ID NO: 7 NYYVT SEQ ID NO: 8 HYGSDETAYATWAIG SEQ ID NO: 9 DDSSDWDAKFNL SEQ ID NO: 10 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCAGATGTGC CTATGATATGACCCAGACTCCAGCCTCGGTGTCTGCAGCTGTGGGAGGCACAGTCACCATCAAGTGCC AGGCCAGTCAGAGCATTAACAATGAATTATCCTGGTATCAGCAGAAACCAGGGCAGCGTCCCAAGCTC CTGATCTATAGGGCATCCACTCTGGCATCTGGGGTCTCATCGCGGTTCAAAGGCAGTGGATCTGGGAC AGAGTTCACTCTCACCATCAGCGACCTGGAGTGTGCCGATGCTGCCACTTACTACTGTCAACAGGGTT ATAGTCTGAGGAATATTGATAATGCTTTCGGCGGAGGGACCGAGGTGGGTGGTCAAACGTACGGTAGCG GCCCCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGC CTGCTGAATAACTT SEQ ID NO: 11 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGCTGGA GGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTGCACAGCCTCTGGATTCT CCCTCAGTAACTACTACGTGACCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAATGGATCGGAATC ATTTATGGTAGTGATGAAACGGCCTACGCGACCTGGGCGATAGGCCGATTCACCATCTCCAAAACCTC GACCACGGTGGATCTGAAAATGACCAGTCTGACAGCCGCGGACACGGCCACCTATTTCTGTGCCAGAG ATGATAGTAGTGACTGGGATGCAAAATTTAACTTGTGGGGCCAAGGCACCCTGGTCACCGTCTCGAGC GCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGC GGCCCTGGGCTGCCTGGTCAAGG SEQ ID NO: 12 CAGGCCAGTCAGAGCATTAACAATGAATTATCC SEQ ID NO: 13 AGGGCATCCACTCTGGCATCT SEQ ID NO: 14 CAACAGGGTTATAGTCTGAGGAATATTGATAATGCT SEQ ID NO: 15 AACTACTACGTGACC SEQ ID NO: 16 ATCATTTATGGTAGTGATGAAACGGCCTACGCGACCTGGGCGATAGGC SEQ ID NO: 17 GATGATAGTAGTGACTGGGATGCAAAATTTAACTTG SEQ ID NO: 18 EVQLVESGGGLVQPGGSLRLSCAASGFSLSNYYVTWVRQAPGKGLEWVGIIYGSDETAYATWAIGRFTISR DNSKNTLYLQMNSLRAEDTAVYYCARDDSSDWDAKFNL SEQ ID NO: 19 EVQLVESGGGLVQPGGSLRLSCAASGFSLSNYYVTWVRQAPGKGLEWVGIIYGSDETAYATSAIGRFTISR DNSKNTLYLQMNSLRAEDTAVYYCARDDSSDWDAKFNL SEQ ID NO: 20 IQMTQSPSSLSASVGDRVTITCQASQSINNELSWYQQKPGKAPKLLIYRASTLASGVPSRFSGSGSGTDFTLTI- SSLQPDDFATYYCQQGYSLRNIDNA SEQ ID NO: 21 MDTRAPTQLLGLLLLWLPGARCAYDMTQTPASVEVAVGGTVTINCQASETIYSWLSWYQQKPGQPPKLLI YQASDLASGVPSRFSGSGAGTEYTLTISGVQCDDAATYYCQQGYSGSNVDNVFGGGTEVVVKRTVAAPSV FIFPPSDEQLKSGTASVVCLLNNFYPREAK SEQ ID NO: 22 METGLRWLLLVAVLKGVQCQEQLKESGGRLVTPGTPLTLTCTASGFSLNDHAMGWVRQAPGKGLEYIGFI NSGGSARYASWAEGRFTISRTSTTVDLKMTSLTTEDTATYFCVRGGAVWSIHSFDPWGPGTLVTVSSASTK GPSVFPLAPSSKSTSGGTAALGCLVK SEQ ID NO: 23 QASETIYSWLS SEQ ID NO: 24 QASDLAS SEQ ID NO: 25 QQGYSGSNVDNV SEQ ID NO: 26 DHAMG SEQ ID NO: 27 FINSGGSARYASWAEG SEQ ID NO: 28 GGAVWSIHSFDP SEQ ID NO: 29 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCAGATGTGC CTATGATATGACCCAGACTCCAGCCTCTGTGGAGGTAGCTGTGGGAGGCACAGTCACCATCAATTGCC AGGCCAGTGAGACCATTTACAGTTGGTTATCCTGGTATCAGCAGAAGCCAGGGCAGCCTCCCAAGCTC CTGATCTACCAGGCATCCGATCTGGCATCTGGGGTCCCATCGCGATTCAGCGGCAGTGGGGCTGGGAC AGAGTACACTCTCACCATCAGCGGCGTGCAGTGTGACGATGCTGCCACTTACTACTGTCAACAGGGTT ATAGTGGTAGTAATGTTGATAATGTTTTCGGCGGAGGGACCGAGGTGGTGGTCAAACGTACGGTAGCG GCCCCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGC CTGCTGAATAACTTCTATCCCAGAGAGGCCAAAG SEQ ID NO: 30 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGGAGCAGCT GAAGGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTTACCTGCACAGCCTCTGGAT TCTCCCTCAATGACCATGCAATGGGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAATACATCGGA TTCATTAATAGTGGTGGTAGCGCACGCTACGCGAGCTGGGCAGAAGGCCGATTCACCATCTCCAGAAC CTCGACCACCGGTGGATCTGAAAATGACCAGTCTGACAACCGAGGACACGGCCACCTATTTCTGTGTCA GAGGGGGTGCTGTTTGGAGTATTCATAGTTTTGATCCCTGGGGCCCAGGGACCCTGGTCACCGTCTCG AGCGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCAC AGCGGCCCTGGGCTGCCTGGTCAAG SEQ ID NO: 31 CAGGCCAGTGAGACCATTTACAGTTGCTTATCC SEQ ID NO: 32 CAGGCATCCGATCTGGCATCT SEQ ID NO: 33 CAACAGGGTTATAGTGGTAGTAATGTTGATAATGTT SEQ ID NO: 34 GACCATGCAATGGGC SEQ ID NO: 35 TTCATTAATAGTGGTGGTAGCGCACGCTACGCGAGCTGGGCAGAAGGC SEQ ID NO: 36 GGGGGTGCTGTTTGGAGTATTCATAGTTTTGATCCC SEQ ID NO: 37 MDTRAPTQLLGLLLLWLPGATFAAVLTQTPSPVSAAVGGTVSISCQASQSVYDNNYLSWFQQKPGQPPKL LIYGASTLASGVPSRFVGSGSGTQFTLTITDVQCDDAATYYCAGVYDDDSDNAFGGGTEVVVKRTVAAPS VFIFPPSDEQLKSGTASVVCLLNNF SEQ ID NO: 38 METGLRWLLLVAVLKGVQCQSLEESGGRLVTPGTPLTLTCTASGFSLSVYYMNWVRQAPGKGLEWIGFIT MSDNINYASWAKGRFTISKTSTTVDLKMTSPTTEDTATYFCARSRGWGTMGRLDLWGPGTLVTVSSASTK GPSVFPLAPSSKSTSGGTAALGCLVK SEQ ID NO: 39 QASQSVYDNNYLS SEQ ID NO: 40 GASTLAS SEQ ID NO: 41 AGVYDDDSDNA SEQ ID NO: 42 VYYMN SEQ ID NO: 43 FITMSDNINYASWAKG SEQ ID NO: 44 SRGWGTMGRLDL SEQ ID NO: 45 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCACATTTGC CGCCGTGCTGACCCAGACTCCATCTCCCGTGTCTGCAGCTGTGGGAGGCACAGTCAGCATCAGTTGCC AGGCCAGTCAGAGTGTTTATGACAACAACTACTTATCCTGGTTTCAGCAGAAACCAGGGCAGCCTCCC AAGCTCCTGATCTATGGTGCATCCACTCTGGCATCTGGGGTCCCATCGCGGTTCGTGGGCAGTGGATCT GGGACACAGTTCACTCTCACCATCACAGACGTCGCAGTGTGACGATGCTGCCACTTACTATTGTGCAGG CGTTTATGATGATGATAGTGATAATGCCTTCGGCGGAGGGACCGAGGTGGTGGTCAAACGTACGGTAG CGGCCCCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGT GCCTGCTGAATAACTTCT SEQ ID NO: 46 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTGGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGCTGGA GGAGTCCGGGGGTCGCCTGGTCACCCCTGGGACACCCCTGACACTCACCTGCACAGCCTCTGGATTCT CCCTCAGTGTCTACTACATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAATGGATCGGATTC ATTACAATGAGTGATAATATAAATTACGCGAGCTGGGCGAAAGGCCGATTCACCATCTCCAAAACCTC GACCACGGTGGATCTGAAAATGACCAGTCCGACAACCGAGGACACGGCCACCTATTTCTGTGCCAGGA GTCGTGGCTGGGGTACAATGGGTCGGTTGGATCTCTGGGGCCCAGGCACCCTCGTCACCGTCTCGAGC GCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGC GGCCCTGGGCTGCCTGGTCAAGG SEQ ID NO: 47 CAGGCCAGTCAGAGTGTTTATGACAACAACTACTTATCC SEQ ID NO: 48 GGTGCATCCACTCTGGCATC SEQ ID NO: 49 GCAGGCGTTTATGATGATGATAGTGATAATGCC SEQ ID NO: 50 GTCTACTACATGAAC SEQ ID NO: 51 TTCATTACAATGAGTGATAATATAAATTACGCGAGCTGGGCGAAAGGC SEQ ID NO: 52 AGTCGTGGCTGGGGTACAATGGGTCGGTTGGATCTC SEQ ID NO: 53 MDTRAPTQLLGLLLLWLPGAICDPVLTQTPSPVSAPVGGTVSISCQASQSVYENNYLSWFQQKPGQPPKLLI YGASTLDSGVPSRFKGSGSGTQFTLTITDVQCDDAATYYCAGVYDDDSDDAFGGGTEVVVKRTVAAPSVF IFPPSDEQLKSGTASVVCLLNN SEQ ID NO: 54 METGLRWLLLVAVLKGVQCQEQLKESGGGLVTPGGTLTLTCTASGFSLNAYYMNWVRQAPGKGLEWIGF ITLNNNVAYANWAKGRFTFSKTSTTVDLKMTSPTPEDTATYFCARSRGWGAMGRLDLWGHGTLVTVSSA STKGPSVFPLAPSSKSTSGGTAALGCLVK SEQ ID NO: 55 QASQSVYENNYLS SEQ ID NO: 56 GASTLDS SEQ ID NO: 57 AGVYDDDSDDA SEQ ID NO: 58 AYYMN SEQ ID NO: 59 FITLNNNVAYANWAKG SEQ ID NO: 60 SRGWGAMGRLDL SEQ ID NO: 61

ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCATATGTGA CCCTGTGCTGACCCAGACTCCATCTCCCGTATCTGCACCTGTGGGAGGCACAGTCAGCATCAGTTGCCA GGCCAGTCAGAGTGTTTATGAGAACAACTATTTATCCTGGTTTCAGCAGAAACCAGGGCAGCCTCCCA AGCTCCTGATCTATGGTGCATCCACTCTGGATTCTGGGGTCCCATCGCGGTTCAAAGGCAGTGGATCTG GGACACAGTTCACTCTCACCATTACAGACGTGCAGTGTGACGATGCTGCCACTTACTATTGTGCAGGC GTTTATGATGATGATAGTGATGATGCCTTCGGCGGAGGGACCGAGGTGGTGGTCAAACGTACGGTAGC GGCCCCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTG CCTGCTGAATAACTT SEQ ID NO: 62 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTGGCTGTGCTCAAAGGTGTCCAGTGTCAGGAGCAGCT GAAGGAGTCCGGAGGAGGCCTGGTAACGCCTGGAGGAACCCTGACACTCACCTGCACAGCCTCTGGA TTCTCCCTCAATGCCTACTACATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAATGGATCGG ATTCATTACTCTGAATAATAATGTAGCTTACGCGAACTGGGCGAAAGGCCGATTCACCTTCTCCAAAA CCTCGACCACGGTGGATCTGAAAATGACCAGTCCGACACCCGAGGACACGGCCACCTATTTCTGTGCC AGGAGTCGTGGCTGGGGTGCAATGGGTCGGTTGGATCTCTGGGGCCATGGCACCCTGGTCACCGTCTC GAGCGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCA CAGCGGCCCTGGGCTGCCTGGTCAAGG SEQ ID NO: 63 CAGGCCAGTCAGAGTGTTTATGAGAACAACTATTTATCC SEQ ID NO: 64 GGTGCATCCACTCTGGATTCT SEQ ID NO: 65 GCAGGCGTTTATGATGATGATAGTGATGATGCC SEQ ID NO: 66 GCCTACTACATGAAC SEQ ID NO: 67 TTCATTACTCTGAATAATAATGTAGCTTACGCGAACTGGGCGAAAGGC SEQ ID NO: 68 AGTCGTGGCTGGGGTGCAATGGGTCGGTTGGATCTC SEQ ID NO: 69 MDTRAPTQLLGLLLLWLPGATFAQVLTQTPSPVSAAVGGTVTINCQASQSVDDNNWLGWYQQKRGQPPK YLIYSASTLASGVPSRFKGSGSGTQFTLTISDLECDDAATYYCAGGFSGNIFAFGGGTEVVVKRTVAAPSVFI FPPSDEQLKSGTASVVCLLNNF SEQ ID NO: 70 METGLRWLLLVAVLKGVQCQSVEESGGRLVTPGTPLTLTCTVSGFSLSSYAMSWVRQAPGKGLEWIGIIGG FGTTYYATWAKGRFTISKTSTTVDLRITSPTTEDTATYFCARGGPGNGGDIWGQGTLVTVSSASTKGPSVFP LAPSSKSTSGGTAALGCLVKD SEQ ID NO: 71 QASQSVDDNNWLG SEQ ID NO: 72 SASTLAS SEQ ID NO: 73 AGGFSGNIFA SEQ ID NO: 74 SYAMS SEQ ID NO: 75 IIGGFGTTYYATWAKG SEQ ID NO: 76 GGPGNGGDI SEQ ID NO: 77 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCACATTTGC CCAAGTGCTGACCCAGACTCCATCGCCTGTGTCTGCAGCTGTGGGAGGCACAGTCACCATCAACTGCC AGGCCAGTCAGAGTGTTGATGATAACAACTGGTTAGGCTGGTATCAGCAGAAACGAGGGCAGCCTCC CAAGTACCTGATCTATTCTGCATCCACTCTGGCATCTGGGGTCCCATCGCGGTTCAAAGGCAGTGGATC TGGGACACAGTTCACTCTCACCATCAGCGACCTGGAGTGTGACGATGCTGCCACTTACTACTGTGCAG GCGGTTTTAGTGGTAATATCTTTGCTTTCGGCGGAGGGACCGAGGTGGTGGTCAAACGTACGGTAGCG GCCCCATCTGTCTTCATCTTCCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGC CTGCTGAATAACTTCT SEQ ID NO: 78 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGGTGGA GGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTGCACAGTCTCTGGCTTCT CCCTCAGTAGCTATGCAATGAGCTGGGTCCGCCAGGCTCCAGGAAAGGGGCTGGAGTGGATCGGAAT CATTGGTGGTTTTGGTACCACATACTACGCGACCTGGGCGAAAGGCCGATTCACCATCTCCAAAACCT CGACCACGGTGGATCTGAGAATCACCAGTCCGACAACCGAGGACACGGCCACCTATTTCTGTGCCAGA GGTGGTCCTGGTAATGGTGGTGACATCTGGGGCCAAGGGACCCTGGTCACCGTCTCGAGCGCCTCCAC CAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGG GCTGCCTGGTCAAGGACT SEQ ID NO: 79 CAGGCCAGTCAGAGTGTTGATGATAACAACTGGTTAGGC SEQ ID NO: 80 TCTGCATCCACTCTGGCATCT SEQ ID NO: 81 GCAGGCGGTTTTAGTGGTAATATCTTTGCT SEQ ID NO: 82 AGCTATGCAATGAGC SEQ ID NO: 83 ATCATTGGTGGTTTTGGTACCACATACTACGCGACCTGGGCGAAAGGC SEQ ID NO: 84 GGTGGTCCTGGTAATGGTGGTGACATC SEQ ID NO: 85 MDTRAPTQLLGLLLLWLPGATFAAVLTQTPSPVSVPVGGTVTIKCQSSQSVYNNFLSWYQQKPGQPPKLLI YQASKLASGVPDRFSGSGSGTQFTLTISGVQCDDAATYYCLGGYDDDADNAFGGGTEVVVKRTVAAPSVF IFPPSDEQLKSGTASVVCLLNNF SEQ ID NO: 86 METGLRWLLLVAVLKGVQCQSVEESGGRLVTPGTPLTLTCTVSGIDLSDYAMSWVRQAPGKGLEWIGIIY AGSGSTWYASWAKGRFTISKTSTTVDLKITSPTTEDTATYFCARDGYDDYGDFDRLDLWGPGTLVTVSSAS TKGPSVFPLAPSSKSTSGGTAALGCLVKD SEQ ID NO: 87 QSSQSVYNNFLS SEQ ID NO: 88 QASKLAS SEQ ID NO: 89 LGGYDDDADNA SEQ ID NO: 90 DYAMS SEQ ID NO; 91 IIYAGSGSTWYASWAKG SEQ ID NO: 92 DGYDDYGDFDRLDL SEQ ID NO: 93 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCACATTTGC AGCCGTGCTGACCCAGACACCATCGCCCGTGTCTGTACCTGTGGGAGGCACAGTCACCATCAAGTGCC AGTCCAGTCAGAGTGTTTATAATAATTTCTTATCGTGGTATCAGCAGAAACCAGGGCAGCCTCCCAAG CTCCTGATCTACCAGGCATCCAAACTGGCATCTGGGGTCCCAGATAGGTTCAGCGGCAGTGGATCTGG GACACAGTTCACTCTCACCATCAGCGGCGTGCAGTGTGACGATGCTGCCACTTACTACTGTCTAGGCG GTTATGATGATGATGCTGATAATGCTTTCGGCGGAGGGACCGAGGTGGTGGTCAAACGTACGGTAGCG GCCCCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGC CTGCTGAATAACTTC SEQ ID NO: 94 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGGTGGA GGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACGCTCACCTGCACAGTCTCTGGAATCG ACCTCAGTGACTATGCAATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAATGGATCGGAAT CATTTATGCTGGTAGTGGTAGCACATGGTACGCGAGCTGGGCGAAAGGCCGATTCACCATCTCCAAAA CCTCGACCACGGTGGATCTGAAAATCACCAGTCCGACAACCGAGGACACGGCCACCTATTTCTGTGCC AGAGATGGATACGATGACTATGGTGATTTCGATCGATTGGATCTCTGGGGCCCAGGCACCCTCGTCAC CGTCTCGAGCGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGG GGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACT SEQ ID NO: 95 CAGTCCAGTCAGAGTGTTTATAATAATTTCTTATCG SEQ ID NO: 96 CAGGCATCCAAACTGGCATCT SEQ ID NO: 97 CTAGGCGGTTATGATGATGATGCTGATAATGCT SEQ ID NO: 98 GACTATGCAATGAGC SEQ ID NO: 99 ATCATTTATGCTGGTAGTGGTAGCACATGGTACGCGAGCTCGGGCAAAGGC SEQ ID NO: 100 GATGGATACGATGACTATGGTGATTTCGATCGATTGGATCTC SEQ ID NO: 101 MDTRAPTQLLGLLLLWLPGARCAYDMTQTPASVSAAVGGTVTIKCQASQSINNELSWYQQKSGQRPKLLI YRASTLASGVSSRFKGSGSGTEFTLTISDLECADAATYYCQQGYSLRNIDNAFGGGTEVVVKRTVAAPSVFI FPPSDEQLKSGTASVVCLLNNF SEQ ID NO: 102 METGLRWLLLVAVLSGVQCQSLEESGGRLVTPGTPLTLTCTASGFSLSNYYMTWVRQAPGKGLEWKIMIY GSDETAYANWAIGRFTISKTSTIVDLKMTSLTAALDTATYFCARDDSSDWDAKFNLWGQGTLVTVSSASTK GPSVFPLAPSSKSTSGGTAALGCLVK SEQ ID NO: 103 QASQSINNELS SEQ ID NO: 104 RASTLAS SEQ ID NO: 105 QQGYSLRNIDNA SEQ ID NO: 106 NYYMT SEQ ID NO: 107 MIYGSDETAYANWAIG SEQ ID NO: 108 DDSSDWDAKFNL SEQ ID NO: 109 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGTCCTGCTGCTCTGGCTCCCAGGTGCCAGATGTGC CTATGATATGACCCAGACTCCAGCCTCGGTGTCTGCAGCTGTGGGAGGCACAGTCACCATCAAATGCC AGGCCAGTCAGAGCATTAACAATGAATTATCCTGGTATCAGCAGAAATCAGGGCAGCGTCCCAAGCTC CTGATCTATAGGGCATCCACTCTGGCATCTGGGGTCTCATCGCGGTTCAAAGGCAGTGGATCTGGGAC AGAGTTCACTCTCACCATCAGCGACCTGGAGTGTGCCGATGCTGCCACTTACTACTGTCAACAGGGTT ATAGTCTGAGGAATATTGATAATGCTTTCGGCGGAGGGACCGAGGTGGTGGTCAAACGTACGGTAGCG GCCCCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGC CTGCTGAATAACTTC SEQ ID NO: 110 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCTCAGGTGTCCAGTGTCAGTCGCTGGAG GAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTGCACAGCCTCTGGATTCTC CCTCAGTAACTACTACATGACCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAATGGATCGGAATG ATTTATGGTAGTGATGAAACAGCCTACGCGAACTGGGCGATAGGCCGATTCACCATCTCCAAAACCTC GACCACGGTGGATCTGAAAATGACCAGTCTGACAGCCGCGGACACGGCCACCTATTTCTGTGCCAGAG ATGATAGTAGTGACTGGGATGCAAAATTTAACTTGTGGGGCCAAGGGACCCTCGTCACCGTCTCGAGC GCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGC GGCCCTGGGCTGCCTGGTCAAGG SEQ ID NO: 111 CAGGCCAGTCAGAGCATTAACAATGAATTATCC SEQ ID NO: 112 AGGGCATCCACTCTGGCATCT SEQ ID NO: 113 CAACAGGGTTATAGTCTGAGGAATATTGATAATGCT SEQ ID NO: 114 AACTACTACATGACC SEQ ID NO: 115 ATGATTTATGGTAGTGATGAAACAGCCTACGCGAACTGGGCGATAGGC SEQ ID NO: 116 GATGATAGTAGTGACTGGGATGCAAAATTTAACTTG SEQ ID NO: 117 EVQLVESGGGLVQPGGSLRLSCAASGFSLSNYYMTWVRQAPGKGLEWVGMIYGSDETAYANWAIGRFTIS RDNSKNTLYLQMNSLRAEDTAVYYCARDDSSDWDAKFNL SEQ ID NO: 118 EVQLVESGGGLVQPGGSLRLSCAASGFSLSNYYMTWVRQAPGKGLEWVGMIYGSDETAYANWAIGRFTIS RDNSKNTLYTQMNSLRAEDTAVYYCARDDSSDWDAKFNL SEQ ID NO: 119 DIQMTQSPSTLSASVGDRVTITCQASQSINNELSWYQQKPGKAPKLLIYRASTLASGVPSRFSGSGSGTEFTL TISSLQPDDFATYYCQQGYSLRNIDNA SEQ ID NO: 120 IIYGSDETAYATSAIG SEQ ID NO: 121

MIYGSDETAYANSAIG SEQ ID NO: 122 MDTRAPTQLLGLLLLWLPGATFAAVLTQTPSPVSAAVGGTVTISCQSSQSVGNNQDLSWFQQRPGQPPKLL IYEISKLESGVPSRFSGCGCGTHFTLTISGVQCDDAATYYCLGGYDDDADNA SEQ ID NO: 123 METGLRWLLLVAVLKGVQCHSVEESGGRLVTPGTPLTLTCTVSGFSLSSRTMSWVRQAPGKGLEWIGYIW SGGSTYYATWAKGRFTISKTSTTVDLKITSPTTEDTATYTCARLGDTGGHAYATRLNL SEQ ID NO: 124 QSSQSVGNNQDLS SEQ ID NO: 125 EISKLES SEQ ID NO: 126 LGGYDDDADNA SEQ ID NO: 127 SRTMS SEQ ID NO: 128 YIWSGGSTYYATWAKG SEQ ID NO: 129 LGDTGGHAYATRLNL SEQ ID NO: 130 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCACATTTGC AGCCGTGCTGACCCAGACACCATCACCCGTGTCTGCAGCTGTGGGAGGCACAGTCACCATCAGTTGCC AGTCCAGTCAGAGTGTTGGTAATAACCAGGACTTATCCTGGTTTCAGCAGAGACCAGGGCAGCCTCCC AAGCTCCTGATCTACGAAATATCCAAACTGGAATCTGGGGTCCCATCGCGGTTCAGCGGCAGTGGATC TGGGACACACTTCACTCTCACCATCAGCGGCGTACAGTGTGACGATGCTGCCACTTACTACTGTCTAGG CGGTTATGATGATGATGCTGATAATGCT SEQ ID NO: 131 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCACTCGGTGGA GGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTGCACAGTCTCTGGATTCT CCCTCAGTAGTCGTACAATGTCCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGGATAC ATTTGGAGTGGTGGTAGCACATACTACGCGACCTGGGCGAAAGGCCGATTCACCATCTCCAAAACCTC GACCACGGTGGATCTGAAAATCACCAGTCCGACAACCGAGGACACGGCCACCTATTTCTGTGCCAGAT TGGGCGATACTGGTGGTCACGCTTATGCTACTCGCTTAAATCTC SEQ ID NO: 132 CAGTCCAGTCAGAGTGTTGGTAATAACCAGGACTTATCC SEQ ID NO: 133 GAAATATCCAAACTUGAATCT SEQ ID NO: 134 CTAGGCGGTTATGATGATGATGCTGATAATGCT SEQ ID NO: 135 AGTCGTACAATGTCC SEQ ID NO: 136 TACATTTGGAGTGGTGGTAGCACATACTACGCGACCTGGGCGAAATGC SEQ ID NO: 137 TTGGGCGATACTGGTGGTCACGCTTATGCTACTCGCTTAAATCTC SEQ ID NO: 138 MDTRAPTQLLGLLLLWLPGATFAAVLTQTPSSVSAAVGGTVSISCQSSQSVYSNKYLAWYQQKPGQPPKL LIYWTSKTASGAPSRFSGSGSGTQFTLTISGVQCDDAATYYCLGAYDDDADNA SEQ ID NO: 139 METGLRWLLLVAVLKGVQCQSVEESGGRLVKPDETLTLTCTASGFSLEGGYMTWVRQAPGKGLEWIGISY DSGSTYYASWAKGRFTISKTSSTTVDLKMTSLTTEDTATYFCVRSLKYPTVTSDDL SEQ ID NO: 140 QSSQSVYSNKYLA SEQ ID NO: 141 WTSKLAS SEQ ID NO: 142 LGAYDDDADNA SEQ ID NO: 143 GGYMT SEQ ID NO: 144 ISYDSGSTYYASWAKG SEQ ID NO: 145 SLKYPTVTSML SEQ ID NO: 146 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCACATTTGC AGCCGTGCTGACCCAGACACCATCGTCCGTGTCTGCAGCTGTGGGAGGCACAGTCAGCATCAGTTGCC AGTCCAGTCAGAGTGTTTATAGTAATAAGTACCTAGCCTGGTATCAGCAGAAACCAGGGCAGCCTCCC AAGCTCCTGATCTACTGGACATCCAAACTGGCATCTGGGGCCCCATCACGGTTCAGCGGCAGTGGATC TGGGACACAATTCACTCTCACCATCAGCGGCGTGCAGTGTGACGATGCTGCCACTTACTACTGTCTAG GCGCTTATGATGATGATGCTGATAATGCT SEQ ID NO: 147 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGGTGGA AGAGTCCGGGGGTCGCCTGGTCAAGCCTGACGAAACCCTGACACTCACCTGCACAGCCTCTGGATTCT CCCTGGAGGGCGGCTACATGACCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAATGGATCGGAAT CAGTTATGATAGTGGTAGCACATACTACGCGAGCTGGGCGAAAGGCCGATTCACCATCTCCAAGACCT CGTCGACCACGGTGGATCTGAAAATGACCAGTCTGACAACCGAGGACACGGCCACCTATTTCTGCGTC AGATCACTAAAATATCCTACTGTTACTTCTGATGACTTG SEQ ID NO: 148 CAGTCCAGTCAGAGTGTTTATAGTAATAAGTACCTAGCC SEQ ID NO: 149 TGGACATCCAAACTGGCATCT SEQ ID NO: 150 CTAGGCGCTTATGATGATGATGCTGATAATGCT SEQ ID NO: 151 GGCGGCTACATGACC SEQ ID NO: 152 ATCAGTTATGATAGTGGTAGCACATACTACGCGAGCTGGGCGAAAGGC SEQ ID NO: 153 TCACTAAAATATCCTACTGTTACTTCTGATGACTTG SEQ ID NO: 154 MDTRAPTQLLGLLLLWLPGATFAAVLTQTPSPVSAAVGGTVTISCQSSQSVYNNNDLAWYQQKPGQPPKL LIYYASTLASGVPSRFKGSGSGTQFTLTISGVQCDDAAAYYCLGGYDDDADNA SEQ ID NO: 155 METGLRWLLLVAVLKGVQCQSVEESGGRLVTPGTPLTLTCTVSGLSLSSNTINWVRQAPGKGLEWIGYIWS GGSTYYASWVNGRFTISKTSTTVDLKITSPTTEDTATYFCARGGYASGGYPYATRLDL SEQ ID NO: 156 QSSQSVYNNNDLA SEQ ID NO: 157 YASTLAS SEQ ID NO: 158 LGGYDDDADNA SEQ ID NO: 159 SNTLN SEQ ID NO: 160 YIWSGGSTYYASWVNG SEQ ID NO: 161 GGYASGGYPYATRLDL SEQ ID NO: 162 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCACATTTGC AGCCGTGCTGACCCAGACACCATCACCCGTGTCTGCAGCTGTGGGAGGCACAGTCACCATCAGTTGCC AGTCCAGTCAGAGTGTTTATAATAATAACGACTTAGCCTGGTATCAGCAGAAACCAGGGCAGCCTCCT AAACTCCTGATCTATTATGCATCCACTCTGGCATCTGGGGTCCCATCGCGGTTCAAAGGCAGTGGATCT GGGACACAGTTCACTCTCACCATCAGCGGCGTGCAGTGTGACGATGCTGCCGCTTACTACTGTCTAGG CGGTTATGATGATGATGCTGATAATGCT SEQ ID NO: 163 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTCTCAAAGGTGTCCAGTGTCAGTCGGTGGA GGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTGCACAGTATCTGGATTAT CCCTCAGTAGCAATACAATAAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGGATA CATTTGGAGTGGTGGTAGTACATACTACGCGAGCTGGGTGAATGGTCGATTCACCATCTCCAAAACCT CGACCACGGTGGATCTGAAAATCACCAGTCCGACAACCGAGGACACGGCCACCTATTTCTGTGCCAGA GGGGGTTACGCTAGTGGTGGTTATCCTTATGCCACTCGGTTGGATCTC SEQ ID NO: 164 CAGTCCAGTCAGAGTGTTTATAATAATAACGACTTAGCC SEQ ID NO: 165 TATGCATCCACTCTGGCATCT SEQ ID NO: 166 CTAGGCGGTTATGATGATGATGCTGATAATGCT SEQ ID NO: 167 AGCAATACAATAAAC SEQ ID NO: 168 TACATTTGGAGTGGTGGTAGTACATACTACGCGAGCTGGGTGAATGGT SEQ ID NO: 169 GGGGGTTACGCTAGTGGTGGTTATCCTTATGCCACTCGGTTGGATCTC SEQ ID NO: 170 MDTRAPTQLLGLLLLWLPGATFAAVLTQTPSSVSAAVGGTVTINCQSSQSVYNNDYLSWYQQRPGQRPKL LIYGASKLASGVPSRFKGSGSGKQFTLTISGVQCDDAATYYCLGDYDDDADNT SEQ ID NO: 171 METGLRWLLLVAVLKGVQCQSLEESGGRLVTPGTPLTLTCTVSGFTLSTNYYLSWVRQAPGKGLEWIGIIY PSGNTYCAKWAKGRFTISKTSSTTVDLICMTSPTTEDTATYFCARNYGGDESL SEQ ID NO: 172 QSSQSVYNNDYLS SEQ ID NO: 173 GASKLAS SEQ ID NO: 174 LGDYDDDADNT SEQ ID NO: 175 TNYYLS SEQ ID NO: 176 IIYPSGNTYCAKWAKG SEQ ID NO: 177 NYGGDESL SEQ ID NO: 178 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCACATTTGC AGCCGTGCTGACCCAGACACCATCCTCCGTGTCTGCAGCTGTGGGAGGCACAGTCACCATCAATTGCC AGTCCAGTCAGAGTGTTTATAATAACGACTACTTATCCTGGTATCAACAGAGGCCAGGGCAACGTCCC AAGCTCCTAATCTATGGTGCTTCCAAACTGGCATCTGGGGTCCCGTCACGGTTCAAAGGCAGTGGATC TGGGAAACAGTTTACTCTCACCATCAGCGGCGTGCAGTGTGACGATGCTGCCACTTACTACTGTCTGG GCGATTATGATGATGATGCTGATAATACT SEQ ID NO: 179 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGCTGGA GGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTCACTTGCACAGTCTCTGGATTCA CCCTCAGTACCAACTACTACCTGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTAGAATGGATCGGA ATCATTTATCCTAGTGGTAACACATATTGCGCGAAGTGGGCGAAAGGCCGATTCACCATCTCCAAAAC CTCGTCGACCACGGTGGATCTGAAATGACCAGTCCGACAACCGAGGACACAGCCACGTATTTCTGTG CCAGAAATTATGGTGGTGATGAAAGTTTG SEQ ID NO: 180 CAGTCCAGTCAGAGTGTTTATAATAACGACTACTTATCC SEQ ID NO: 181 GGTGCTTCCAAACTGGCATCT SEQ ID NO: 182 CTGGGCGATTATGATGATGATGCTGATAATACT SEQ ID NO: 183 ACCAACTACTACCTGAGC SEQ ID NO: 184 ATCATTTATCCTAGTGGTAACACATATTGCGCGAAGTGGGCGAAAGGC SEQ ID NO: 185 AATTATGGTGGTGATGAAAGTTTG SEQ ID NO: 186 MDTRAPTQLLGLLLLWLPGARCDVVMTQTPASVEAAVGGTVTIKCQASETIGNALAWYQQKSGQPPKLLI YKASKLASGVPSRFKGSGSGTEYTLTISDLECADAATYYCQWCYFGDSV SEQ ID NO: 187 METGLRWLLLVTVLKGVQCQEQLVESGGGLVQPEGSLTLTCTASGFDFSSGYYMCWVRQAPGKGLEWIA CIFTITTNTYYASWAKGRFTISKTSSTTVTLQMTSLTAADTATYLCARGIYSDNNYYAL SEQ ID NO: 188

QASETIGNALA SEQ ID NO: 189 KASKLAS SEQ ID NO: 190 QWCYFGDSV SEQ ID NO: 191 SGYYMC SEQ ID NO: 192 CIFTITTNTYYASWAKG SEQ ID NO: 193 GIYSDNNYYAL SEQ ID NO: 194 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCAGATGTGA TGTTGTGATGACCCAGACTCCAGCCTCCGTGGAGGCAGCTGTGGGAGGCACAGTCACCATCAAGTGCC AGGCCAGTGAGACCATTGGCAATGCATTAGCCTGGTATCAGCAGAAATCAGGGCAGCCTCCCAAGCTC CTGATCTACAAGGCATCCAAACTGGCATCTGGGGTCCCATCGCGGTTCAAAGGCAGTGGATCTGGGAC AGAGTACACTCTCACCATCAGCGACCTGGAGTGTGCCGATGCTGCCACTTACTACTGTCAATGGTGTTA TTTTGGTGATAGTGTT SEQ ID NO: 195 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCACTGTGCTCAAAGGTGTCCAGTGTCAGGAGCAGCT GGTGGAGTCCGGGGGAGGCCTGGTCCAGCCTGAGGGATCCCTGACACTCACCTGCACAGCCTCTGGAT TCGACTTCAGTAGCGGCTACTACATGTGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATC GCGTGTATTTTCACTATTACTACTAACACTTACTACGCGAGCTGGGCGAAAGGCCGATTCACCATCTCC AAGACCTCGTCGACCACGGTGACTCTGCAAATGACCAGTCTGACAGCCGCGGACACGGCCACCTATCT CTGTGCGAGAGGGATTTATTCTGATAATAATTATTATGCCTTG SEQ ID NO: 196 CAGGCCAGTGAGACCATTGGCAATGCATTAGCC SEQ ID NO: 197 AAGGCATCCAAACTGGCATCT SEQ ID NO: 198 CAATGGTGTTATTTTGGTGATAGTGTT SEQ ID NO: 199 AGCGGCTACTACATGTGC SEQ ID NO: 200 TGTATTTTCACTATTACTACTAACACTTACTACGCGAGCTGGGCGAAAGGC SEQ ID NO: 201 GGGATTTATTCTGATAATAATTATTATGCCTTG SEQ ID NO: 202 MDTRAPTQLLGLLLLWLPGARCDVVMTQTPASVEAAVGGTVIKCQASESIGNALAWYQQKPGQPPKLLI YKASTLASGVPSRFSGSGSGTEFTLTISGVQCADAAAYYCQWCYFGDSV SEQ ID NO: 203 METGLRWLLLVAVLKGVQCQQQLVESGGGLVKPGASLTLTCKASGFSFSSGYYMCWVRQAPGKGLESIA CIFTITDNTYYANWAKGRFTISKPSSPTVTLQMTSLTAADTATYFCARGIYSTDNYYAL SEQ ID NO: 204 QASESIGNALA SEQ ID NO: 205 KASTLAS SEQ ID NO: 206 QWCYFGDSV SEQ ID NO: 207 SGYYMC SEQ ID NO: 208 CIFITIDNTYYANWAKG SEQ ID NO: 209 GIYSTDNYYAL SEQ ID NO: 210 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCAGATGTGA TGTTGTGATGACCCAGACTCCAGCCTCCGTGGAGGCAGCTGTGGGAGGCACAGTCACCATCAAGTGCC AGGCCAGTGAGAGCATTGGCAATGCATTAGCCTGGTATCAGCAGAAACCAGGGCAGCCTCCCAAGCT CCTGATCTACAAGGCATCCACTCTGGCATCTGGGGTCCCATCGCGGTTCAGCGGCAGTGGATCTGGGA CAGAGTTCACTCTCACCATCAGCGGCGTGCAGTGTGCCGATGCTGCCGCTTACTACTGTCAATGGTGTT ATTTTGGTGATAGTGTT SEQ ID NO: 211 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGCAGCAGCT GGTGGAGTCCGGGGGAGGCCTGGTCAAGCCGGGGGCATCCCTGACACTCACCTGCAAAGCCTCTGGAT TCTCCTTCAGTAGCGGCTACTACATGTGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTCGATC GCATGCATTTTTACTATTACTGATAACACTTACTACGCGAACTGGGCGAAAGGCCGATTCACCATCTCC AAGCCCTCGTCGCCCACGGTGACTCTGCAAATGACCAGTCTGACAGCCGCGGACACGGCCACCTATTT CTGTGCGAGGGGGATTTATTCTACTGATAATTATTATGCCTTG SEQ ID NO: 212 CAGGCCAGTGAGAGCATTGGCAATGCATTAGCC SEQ ID NO: 213 AAGGCATCCACTCTGGCATCT SEQ ID NO: 214 CAATGGTGTTATTTTGGTGATAGTGTT SEQ ID NO: 215 AGCGGCTACTACATGTGC SEQ ID NO: 216 TGCATTTTTACTATTACTGATAACACTTACTACGCGAACTGGGCGAAAGGC SEQ ID NO: 217 GGGATTTATTCTACTGATAATTATTATGCCTTG SEQ ID NO: 218 MDTRAPTQLLGLLLLWLPGARCDVVMTQTPASVEAAVGGTVTIKCQASQSVSSYLNWYQQKPGQPPKLLI YRASTLESGVPSRFKGSGSGTEFTLTISDLECADAATYYCQCTYGTSSSYGAA SEQ ID NO: 219 METGLRWLLLVAVLKGVQCQSVEESGGRLVTPGTPLTLTCTVSGISLSSNAISWVRQAPGKGLEWIGIISYS GTTYYASWAKGRFTISKTSSTTVDLKITSPTTEDTATYFCARDDPTTVMVMLIPFGAGMDI SEQ ID NO: 220 QASQSVSSYLN SEQ ID NO: 221 RASTLES SEQ ID NO: 222 QCTYGTSSSYGAA SEQ ID NO: 223 SNAIS SEQ ID NO: 224 IISYSGTTYYASWAKG SEQ ID NO: 225 DDPTTVMVMLIPFGAGMDL SEQ ID NO: 226 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCAGATGTGA TGTTGTGATGACCCAGACTCCAGCCTCCGTGGAGGCAGCTGTGGGAGGCACAGTCACCATCAAGTGCC AGGCCAGTCAGAGCGTTAGTAGCTACTTAAACTGGTATCAGCAGAAACCAGGGCAGCCTCCCAAGCTC CTGATCTACAGGGCATCCACTCTGGAATCTGGGGTCCCATCGCGGTTCAAAGGCAGTGGATCTGGGAC AGAGTTCACTCTCACCATCAGCGACCTGGAGTGTGCCGATGCTGCCACTTACTACTGTCAATGTACTTA TGGTACTAGTAGTAGTTATGGTGCTGCT SEQ ID NO: 227 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGGTGGA GGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTGCACCGTCTCTGGTATCT CCCTCAGTAGCAATGCAATAAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAATGGATCGGAAT CATTAGTTATAGTGGTACCACATACTACGCGAGCTGGGCGAAAGGCCGATTCACCATCTCCAAAACCT CGTCGACCACGGTGGATCTGAAAATCACTAGTCCGACAACCGAGGACACGGCCACCTACTTCTGTGCC AGAGATGACCCTACGACAGTTATGGTTATGTTGATACCTTTTGGAGCCGGCATGGACCTC SEQ ID NO: 228 CAGGCCAGTCAGAGCGTTAGTAGCTACTTAAAC SEQ ID NO: 229 AGGGCATCCACTCTGGAATCT SEQ ID NO: 230 CAATGTACTTATGGTACTAGTAGTAGTTATGGTGCTGCT SEQ ID NO: 231 AGCAATGCAATAAGC SEQ ID NO: 232 ATCATTAGTTATAGTGGTACCACATACTACGCGAGCTGGGCGAAAGGC SEQ ID NO: 233 GATGACCCTACGACAGTTATGGTTATGTTGATACCTTTTGGAGCCGGCATGGACCTC SEQ ID NO: 234 MDTRAPTQLLGLLLLWLPGATFAQVLTQTASPVSAAVGGTVTINCQASQSVYKNNYLSWYQQKPGQPPK GLIYSASTLDSGVPLRFSGSGSGTQFTLTISDVQCDDAATYYCLGSYDCSSGDCYA SEQ ID NO: 235 METGLRWLLLVAVLKGVQCQSLEESGGDLVKPEGSLTLTCTASGFSFSSYWMCWVRQAPGKGLEWIACIV TGNGNTYYANWAKGRFTISKTSSTTVTLQMTSLTAADTATYFCAKAYDL SEQ ID NO: 236 QASQSVYKNNYLS SEQ ID NO: 237 SASTLDS SEQ ID NO: 238 LGSYDCSSGDCYA SEQ ID NO: 239 SYWMC SEQ ID NO: 240 CIVTGNGNTYYANWAKG SEQ ID NO: 241 AYDL SEQ ID NO: 242 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCACATTTGC CCAAGTGCTGACCCAGACTGCATCGCCCGTGTCTGCAGCTGTGGGAGGCACAGTCACCATCAACTGCC AGGCCAGTCAGAGTGTTTATAAGAACAACTACTTATCCTGGTATCAGCAGAAACCAGGGCAGCCTCCC AAAGGCCTGATCTATTCTGCATCGACTCTAGATTCTGGGGTCCCATTGCGGTTCAGCGGCAGTGGATCT GGGACACAGTTCACTCTCACCATCAGCGACGTGCAGTGTGACGATGCTGCCACTTACTACTGTCTAGG CAGTTATGATTGTAGTAGTGGTGATTGTTATGCT SEQ ID NO: 243 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGTTGGA GGAGTCCGGGGGAGACCTGGTCAAGCCTGAGGGATCCCTGACACTCACCTGCACAGCCTCTGGATTCT CCTTCAGTAGCTACTGGATGTGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGCATGC ATTGTTACTGGTAATGGTAACACTTACTACGCGAACTGGGCGAAAGGCCGATTCACCATCTCCAAAAC CTCGTCGACCACGGTGACTCTGCAAATGACCAGTCTGACAGCCGCGGACACGGCCACCTATTTTTGTG CGAAAGCCTATGACTTG SEQ ID NO: 244 CAGGCCAGTCAGAGTGTTTATAAGAACAACTACTTATCC SEQ ID NO: 245 TCTGCATCGACTCTAGATTCT SEQ ID NO: 246 CTAGGCAGTTATGATTGTAGTAGTGGTGATTGTTATGCT SEQ ID NO: 247 AGCTACTGGATGTGC SEQ ID NO: 248 TGCATTGTTACTGGTAATGGTAACACTTACTACGCGAACTGGGCGAAAGGC SEQ ID NO: 249 GCCTATGACTTG SEQ ID NO: 250 MDTRAPTQLLGLLLLWLPGSTFAAVLTQTPSPVSAAVGGTVSISCQASQSVYDNNYLSWYQQKPGQPPKL LIYGASTLASGVPSRFKGTGSGTQFTLTITDVQCDDAATYYCAGVFNDDSDDA SEQ ID NO: 251 METGLRWLLLVAVPKGVQCQSLEESGGRLVTPGTPLTLTCTLSGFSLSAYYMSWVRQAPOKOLEWIGFITL SDHISYARWAKGRFTISKTSTTVDLKMTSPTTEDTATYFCARSRGWGAMGRLDL SEQ ID NO: 252 QASQSVYDNNYLS SEQ ID NO: 253 GASTLAS SEQ ID NO: 254 AGVFNDDSDDA SEQ ID NO: 255 AYYMS

SEQ ID NO: 256 FITLSDHISYARWAKG SEQ ID NO: 257 SRGWGAMGRLDL SEQ ID NO: 258 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTTCCACATTTGCC GCCGTGCTGACCCAGACTCCATCTCCCGTGTCTGCAGCTGTGGGAGGCACAGTCAGCATCAGTTGCCA GGCCAGTCAGAGTGTTTATGACAACAACTATTTATCCTGGTATCAGCAGAAACCAGGACAGCCTCCCA AGCTCCTGATCTATGGTGCATCCACTCTGGCATCTGGGGTCCCATCGCGGTTCAAAGGCACGGGATCT GGGACACAGTTCACTCTCACCATCACAGACGTGCAGTGTGACGATGCTGCCACTTACTATTGTGCAGG CGTTTTTAATGATGATAGTGATGATGCC SEQ ID NO: 259 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCCCAAAGGTGTCCAGTGTCAGTCGCTGGA GGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTGCACACTCTCTGGATTCT CCCTCAGTGCATACTATATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAATGGATCGGATTC ATTACTCTGAGTGATCATATATCTTACGCGAGGTGGGCGAAAGGCCGATTCACCATCTCCAAAACCTC GACCACGGTGGATCTGAAAATGACCAGTCCGACAACCGAGGACACGGCCACCTATTTCTGTGCCAGGA GTCGTGGCTGGGGTGCAATGGGTCGGTTGGATCTC SEQ ID NO: 260 CAGGCCAGTCAGAGTGTTTATGACAACAACTATTTATCC SEQ ID NO: 261 GGTGCATCCACTCTGGCATCT SEQ ID NO: 262 GCAGGCGTTTTTAATGATGATAGTGATGATGGC SEQ ID NO: 263 GCATACTATATGAGC SEQ ID NO: 264 TTCATTACTCTGAGTGATCATATATCTTACGCGAGGTGGGCGAAAGGC SEQ ID NO: 265 AGTCGTGGCTGGGGTGCAATGGGTCGGTTGGATCTC SEQ ID NO: 266 MDTRAPTQLLGLLLLWLPGATFAAVLTQTPSPVSAAVGGTVTISCQASQSVYNNKNLAWYQQKSGQPPKL LIYWASTLASGVSSRFSGSGSGTQFTLTVSGVQCDDAATYYCLGVFDDDADNA SEQ ID NO: 267 METGLRWLLLVAVLKGVQCQSVEESGGRLVTPGTPLTLTCTASGFSLSSYSMTWVRQAPGKGLEYIGVIGT SGSTYYATWAKGRFTISRTSTTVALKITSPTTEDTATYFCVRSLSSITFL SEQ ID NO: 268 QASQSVYNNKNLA SEQ ID NO: 269 WASTLAS SEQ ID NO: 270 LGVFDDDADNA SEQ ID NO: 271 SYSMT SEQ ID NO: 272 VIGTSGSTYYATWAKG SEQ ID NO: 273 SLSSFITL SEQ ID NO: 274 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCACATTCGC AGCCGTGCTGACCCAGACACCATCGCCCGTGTCTGCGGCTGTGGGAGGCACAGTCACCATCAGTTGCC AGGCCAGTCAGAGTGTTTATAACAACAAAAATTTAGCCTGGTATCAGCAGAAATCAGGGCAGCCTCCC AAGCTCCTGATCTACTGGGCATCCACTCTGGCATCTGGGGTCTCATCGCGGTTCAGCGGCAGTGGATCT GGGACACAGTTCACTCTCACCGTCAGCGGCGTGCAGTGTGACGATGCTGCCACTTACTACTGTCTAGG CGTTTTTGATGATGATGCTGATAATGCT SEQ ID NO: 275 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAATGTCAGTCGGTGGA GGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTGCACAGCCTCTGGATTCT CCCTCAGTAGCTACTCCATGACCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAATATATCGGAGTC ATTGGTACTAGTGGTAGCACATACTACGCGACCTGGGCGAAAGGCCGATTCACCATCTCCAGAACCTC GACCACGGTGGCTCTGAAAATCACCAGTCCGACAACCGAGGACACGGCCACCTATTTCTGTGTCAGGA GTCTTTCTTCTATTACTTTCTTG SEQ ID NO: 276 CAGGCCAGTCAGAGTGTTTATAACAACAAAAATTTAGCC SEQ ID NO: 277 TGGGCATCCACTCTGGCATCT SEQ ID NO: 278 CTAGGCGTTTTGATGATGATGCTGATAATGCT SEQ ID NO: 279 AGCTACTCCATGACC SEQ ID NO: 280 GTCATTGGTACTAGTGGTAGCACATACTACGCGACCTGGGCGAAAGGC SEQ ID NO: 281 AGTCTTTCTTCTATTACTITCTTG SEQ ID NO: 282 MDTRAPTQLLGLLLLWLPGARCAFELTQTPASVEAAVGGTVTINCQASQNIYRYLAWYQQKPGQPPKFLIY LASTLASOVPSRFKGSGSGTEFTLTISDLECADAATYYCQSYYSSNSVA SEQ ID NO: 283 METGLRWLLLVAVLKGVQCQEQLVESGGDLVQPEGSLTLTCTASELDFSSGYWICWVRQVPGKGLEWIG CIYTGSSGSTFYASWAKGRFTISKTSSTTVTLQMTSLTAADTATYFCARGYSGFGYFKL SEQ ID NO: 284 QASQNIYRYLA SEQ ID NO: 285 LASTLAS SEQ ID NO: 286 QSYYSSNSVA SEQ ID NO: 287 SGYWIC SEQ ID NO: 288 CIYTGSSGSTFYASWAKG SEQ ID NO: 289 GYSGFGYFKL SEQ ID NO: 290 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCAGATGTGC ATTCGAATTGACCCAGACTCCAGCCTCCGTGGAGGCAGCTGTGGGAGGCACAGTCACCATCAATTGCC AGGCCAGTCAGAACATTTATAGATACTTAGCCTGGTATCAGCAGAAACCAGGGCAGCCTCCCAAGTTC CTGATCTATCTGGCATCTACTCTGGCATCTGGGGTCCCATCGCGGTTTAAAGGCAGTGGATCTGGGACA GAGTTCACTCTCACCATCAGCGACCTGGAGTGTGCCGATGCTGCCACTTACTACTGTCAAAGTTATTAT AGTAGTAATAGTGTCGCT SEQ ID NO: 291 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGGAGCAGCT GGTGGAGTCCGGGGGAGACCTGGTCCAGCCTGAGGGATCCCTGACACTCACCTGCACAGCTTCTGAGT TAGACTTCAGTAGCGGCTACTGGATATGCTGGGTCCGCCAGGTTCCAGGGAAGGGGCTGGAGTGGATC GGATGCATTTATACTGGTAGTAGTGGTAGCACTTTTTACGCGAGTTGGGCGAAAGGCCGATTCACCAT CTCCAAAACCTCGTCGACCACGGTGACTCTGCAAATGACCAGTCTGACAGCCGCGGACACGGCCACCT ATTTCTGTGCGAGAGGTTATAGTGGCTTTGGTTACTTTAAGTTG SEQ ID NO: 292 CAGGCCAGTCAGAACATTTATAGATACTTAGCC SEQ ID NO: 293 CTGGCATCTACTCTGGCATCT SEQ ID NO: 294 CAAAGTTATTATAGTAGTAATAGTGTCGCT SEQ ID NO: 295 AGCGGCTACTGGATATGC SEQ ID NO: 296 TGCATTTATACTGGTAGTAGTGGTAGCACTTTTTACGCGAGTTGGGCGAAAGGC SEQ ID NO: 297 GGTTATAGTGGCTTTGGTTACTTTAAGTTG SEQ ID NO: 298 MDTRAPTQLLGLLLLWLPGARCAYDMTQTPASVEVAVGGTVTIKCQASEDYRLLAWYQQKPGQPPKLLI YDSSDLASGVPSRFKGSGSGTEFTLAISGVQCDDAATYYCQQAWSYSDIDNA SEQ ID NO: 299 METGLRWLLLVAVLKGVQCQSVEESGGRLVTPGTPLTLTCTASGFSLSSYYMSWVRQAPGKGLEWIGIITT SGNTFYASWAKGRLTISRTSTTVDLKITSPTTEDTATYFCARTSDIFYYRNL SEQ ID NO: 300 QASEDIYRLLA SEQ ID NO: 301 DSSDLAS SEQ ID NO: 302 QQAWSYSDIDNA SEQ ID NO: 303 SYYMS SEQ ID NO: 304 IITTSGNTFYASWAKG SEQ ID NO: 305 TSDIFYYRNL SEQ ID NO: 306 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCAGATGTGC CTATGATATGACCCAGACTCCAGCCTCTGTGGAGGTAGCTGTGGGAGGCACAGTCACCATCAAGTGCC AGGCCAGTGAGGACATTTATAGGTTATTGGCCTGGTATCAACAGAAACCAGGGCAGCCTCCCAAGCTC CTGATCTATGATTCATCCGATCTGGCATCTGGGGTCCCATCGCGGTTCAAAGGCAGTGGATCTGGGAC AGAGTTCACTCTCGCCATCAGCGGTGTGCAGTGTGACGATGCTGCCACTTACTACTGTCAACAGGCTTG GAGTTATAGTGATATTGATAATGCT SEQ ID NO: 307 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGGTGGA GGAGTCCGGGGGTCGCCTGGTCACGCCGGGGACACCCCTGACACTCACCTGCACAGCCTCTGGATTCT CCCTCAGTAGCTACTACATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAATGGATCGGAATC ATTACTACTAGTGGTAATACATTTTACGCGAGCTGGGCGAAAGGCCGGCTCACCATCTCCAGAACCTC GACCACGGTGGATCTGAAAATCACCAGTCCGACAACCGAGGACACGGCCACCTATTTCTGTGCCAGAA CTTCTGATATTTTTTATTATCGTAACTTG SEQ ID NO: 308 CAGGCCAGTGAGGACATTTATAGGTTATTGGCC SEQ ID NO: 309 GATTCATCCGATCTGGCATCT SEQ ID NO: 310 CAACAGGCTTGGAGTTATAGTGATATTGATAATGCT SEQ ID NO: 311 AGCTACTACATGAGC SEQ ID NO: 312 ATCATTACTACTAGTGGTAATACATTTTACGCGAGCTGGGCGAAAGGC SEQ ID NO: 313 ACTTCTGATATTTTTTATTATCGTAACTTG SEQ ID NO: 314 MDTRAPTQLLGLLLLWLPGATFAAVLTQTASPVSAAVGATVTINCQSSQSVYNDMDLAWFQQKPGQPPKL LIYSASTLASCVPSRFSGSGSGTEFTLTISGVQCDDAATYYCLGAFDDDADNT SEQ ID NO: 315 METGLRWLLLVAVLKGVQCQSVEESGGRLVTPGTPLTLTCTVSGFSLTRHAITWVRQAPGKGLEWIGCIW SGGSTYYATWAKGRFTISKTSTTVDLRITSPTIEDTATYFCARVIGDTAGYAYFTGLDL SEQ ID NO: 316 QSSQSVYNDMDLA SEQ ID NO: 317 SASTLAS SEQ ID NO: 318 LGAFDDDADNT SEQ ID NO: 319 RHAIT SEQ ID NO: 320 CIWSGGSTYYATWAKG SEQ ID NO: 321 VIGDTAGYAYFTGLDL SEQ ID NO: 322 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCACGTTTGC AGCCGTGCTGACCCAGACTGCATCACCCGTGTCTGCCGCTGTGGGAGCCACAGTCACCATCAACTGCC AGTCCAGTCAGAGTGTTTATAATGACATGGACTTAGCCTGGTTTCAGCAGAAACCAGGGCAGCCTCCC AAGCTCCTGATCTATTCTGCATCCACTCTGGCATCTGGGGTCCCATCGCGGTTCAGCGGCAGTGGATCT

GGGACAGAGTTCACTCTCACCATCAGCGGCGTGCAGTGTGACGATGCTGCCACTTACTACTGTCTAGG CGCTTTTGATGATGATGCTGATAATACT SEQ ID NO: 323 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGGTGGA GGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTGCACAGTCTCTGGATTCT CCCTCACTAGGCATGCAATAACCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAATGGATCGGATG CATTTGGAGTGGTGGTAGCACATACTACGCGACCTGGGCGAAAGGCCGATTCACCATCTCCAAAACCT CGACCACGGTGGATCTCAGAATCACCAGTCCGACAACCGAGGACACGGCCACCTACTTCTGTGCCAGA GTCATTGGCGATACTGCTGGTTATGCTTATTTTACGGGGCTTGACTTG SEQ ID NO: 324 CAGTCCAGTCAGAGTCTTTATAATGACATGGACTTAGCC SEQ ID NO: 325 TCTGCATCCACTCTGGCATCT SEQ ID NO: 326 CTAGGCGCTTTTGATGATGATGCTGATAATACT SEQ ID NO: 327 AGGCATGCAATAACC SEQ ID NO: 328 TGCATTTGGAGTGGTGGTAGCACATACTACGCGACCTGGGCGAAAGGC SEQ ID NO: 329 GTCATTGGCGATACTGCTGGTTATGCTTATTTTACGGGCCTTGACTTG SEQ ID NO: 330 MDTRAPTQLLGLLLLWLPGARCYDMTQTPASVEVAVGGTVTIKCQASQSVYNWLSWYQQKPGQPPKLL IYTASSLASGVPSRFSGSGSGTEFTLTISGVECADAATYYCQQGYTSDVDNV SEQ ID NO: 331 METGLRWLLLVAVLKGVQCQSLEEAGGRLVTPGTPLTLTCTVSGIDLSSYAMGWVRQAPGKGLEYIGIISS SGSTYYATWAKGRFTISQASSTTVDLKITSPTTEDSATYFCARCGAGSGGVWLLDGFDP SEQ ID NO: 332 QASQSVYNWLS SEQ ID NO: 333 TASSLAS SEQ ID NO: 334 QQGYTSDVDNV SEQ ID NO: 335 SYAMG SEQ ID NO: 336 IISSSGSTYYATWAKG SEQ ID NO: 337 GCAGSGGVWLLDGFDP SEQ ID NO: 338 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCAGATGTGC CTATGATATGACCCAGACTCCAGCCTCTGTGGAGGTAGCTGTGGGAGGCACAGTCACCATCAAGTGCC AGGCCAGTCAGAGTGTTTATAATTGGTTATCCTGGTATCAGCAGAAACCAGGGCAGCCTCCCAAGCTC CTGATCTATACTGCATCCAGTCTGGCATCTGGGGTCCCATCGCGGTTCAGTGGCAGTGGATCTGGGAC AGAGTTCACTCTCACCATCAGCGGCGTGGAGTGTGCCGATGCTGCCACTTACTACTGTCAACAGGGTT ATACTAGTGATGTTGATAATGTT SEQ ID NO: 339 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGCTGGA GGAGGCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTGCACAGTCTCTGGAATCG ACCTCAGTAGCTATGCAATGGGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAATACATCGGAAT CATTAGTAGTAGTGGTAGCACATACTACGCGACCTGGGCGAAAGGCCGATTCACCATCTCACAAGCCT CGTCGACCACGGTGGATCTGAAAATTACCAGTCCGACAACCGAGGACTCGGCCACATATTTCTGTGCC AGAGGGGGTGCTGGTAGTGGTGGTGTTTGGCTGCTTGATGGTTTTGATCCC SEQ ID NO: 340 CAGGCCAGTCAGAGTGTTTATAATTGGTTATCC SEQ ID NO: 341 ACTGCATCCAGTCTCGCATCT SEQ ID NO: 342 CAACAGGGTTATACTAGTGATGTTGATAATGTT SEQ ID NO: 343 AGCTATGCAATGGGC SEQ ID NO: 344 ATCATTAGTAGTAGTGGTACICACATACTACGCCACCTGGGCGAAAGGC SEQ ID NO: 345 GGGGGTGCTGGTAGTGGTGGTGTTTGGCTGCTTGATGGTTTTGATCCC SEQ ID NO: 346 MDTRAPTQLLGLLLLWLPGAKCADVVMTQTPASVSAAVGGTVTINCQASENIYNWLAWYQQKPGQPPKL LIYTVGDLASGVSSRFKGSGSGTEFTLTISDLECADAATYYCQQGYSSSYVDNV SEQ ID NO: 347 METGLRWLLLVAVLKGVQCQEQLKESGGRLVTPGTPLTLTCTVSGFLNDYAVGWFRQAPGKGLEWIGYI RSSGTTAYATWAKGRFTISATSTTVDLKITSPTTEDTATYFCARGGAGSSGVWILDGFAP SEQ ID NO: 348 QASENIYNWLA SEQ ID NO: 349 TVGDLAS SEQ ID NO: 350 QQGYSSSYVDNV SEQ ID NO: 351 DYAVG SEQ ID NO: 352 YIRSSGTTAYATWAKG SEQ ID NO: 353 GGAGSSGVWILDGFAP SEQ ID NO: 354 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCAAATGTGC CGATGTTGTGATGACCCAGACTCCAGCCTCCGTGTCTGCAGCTGTGGGAGGCACAGTCACCATCAATT GCCAGGCCAGTGAGAACATTTATAATTGGTTAGCCTGGTATCAGCAGAAACCAGGGCAGCCTCCCAAG CTCCTGATCTATACTGTAGGCGATCTGGCATCTGGGGTCTCATCGCGGTTCAAAGGCAGTGGATCTGG GACAGAGTTCACTCTCACCATCAGCGACCTGGAGTGTGCCGATGCTGCCACTTACTATTGTCAACAGG GTTATAGTAGTAGTTATGTTGATAATGTT SEQ ID NO: 355 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGGAGCAGCT GAAGGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTGCACAGTCTCTGGAT TCTCCCTCAATGACTATGCAGTGGGCTGGTTCCGCCAGGCTCCAGGGAAGGGGCTGGAATGGATCGGA TACATTCGTAGTAGTGGTACCACAGCCTACGCGACCTGGGCGAAAGGCCGATTCACCATCTCCGCTAC CTCGACCACGGTGGATCTGAAAATCACCAGTCCGACAACCGAGGACACGGCCACCTATTTCTGTGCCA GAGGGGGTGCTGGTAGTAGTGGTGTGTGGATCCTTGATGGTTTTGCTCCC SEQ ID NO: 356 CAGGCCAGTGAGAACATTTATAATTGGTTAGCC SEQ ID NO: 357 ACTGTAGGCGATCTGGCATCT SEQ ID NO: 358 CAACAGGGTTATAGTAGTAGTTATGTTGATAATGTT SEQ ID NO: 359 GACTATGCAGTGGGC SEQ ID NO: 360 TACATTCGTAGTAGTGGTACCACAGCCTACGCGACCTGGGCGAAAGGC SEQ ID NO: 361 GGGGGTGCTGGTAGTAGTGGTGTGTGGATCCTTGATGGTTTTGCTCCC SEQ ID NO: 362 MDTRAPTQLLGLLLLWLPGATFAQVLTQTPSSVSAAVGGTVTINCQASQSVYQNNYLSWFQQKPGQPPKL LIYGAATLASGVPSRFKGSGSGTQFTLTISDLECDDAATYYCAGAYRDVDS SEQ ID NO: 363 METGLRWLLLVAVLKGVQCQSLEESGGDLVKPGASLTLTCTASGFSFTSTYYIYWVRQAPGKGLEWIACID AGSSGSTYYATWVNGRFTISKTSSTTVTLQMTSLTAADTATYFCAKWDYGGNVGWGYDL SEQ ID NO: 364 QASQSVYQNNYLS SEQ ID NO: 365 GAATLAS SEQ ID NO: 366 AGAYRDVDS SEQ ID NO: 367 STYYTY SEQ ID NO: 368 CIDAGSSGSTYYATWVNG SEQ ID NO: 369 WDYGGNVGWGYDL SEQ ID NO: 370 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCACATTTGCT CAAGTGCTGACCCAGACTCCATCCTCCGTGTCTGCAGCTGTGGGAGGCACAGTCACCATCAATTGCCA GGCCAGTCAGAGTGTTTATCAGAACAACTACTTATCCTGGTTTCAGCAGAAACCAGGGCAGCCTCCCA AGCTCCTGATCTATGGTGCGGCCACTCTGGCATCTGGGGTCCCATCGCGGTTCAAAGGCAGTGGATCT GGGACACAGTTCACTCTCACCATCAGCGACCTGGAGTGTGACGATGCTGCCACTTACTACTGTGCAGG CGCTTATAGGGATGTGGATTCT SEQ ID NO: 371 ATGGAGACTGGGCTGCGCTGGCTTCTCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGTTGGA GGAGTCCGGGGGAGACCTGGTCAAGCCTGGGGCATCCCTGACACTCACCTGCACAGCCTCTGGATTCT CCTTTACTAGTACCTACTACATCTACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGCA TGTATTGATGCTGGTAGTAGTGGTAGCACTTACTACGCGACCTGGGTGAATGGCCGATTCACCATCTCC AAAACCTCGTCGACCACGGTGACTCTGCAAATGACCAGTCTGACAGCCGCGGACACGGCCACCTATTT CTGTGCGAAATGGGATTATGGTGGTAATGTTGGTTGGGGTTATGACTTG SEQ ID NO: 372 CAGGCCAGTCAGAGTGTTTATCAGAACAACTACTTATCC SEQ ID NO: 373 GGTGCGGCCACTCTGGCATCT SEQ ID NO: 374 GCAGGCGCTTATAGGGATGTGGATTCT SEQ ID NO: 375 AGTACCTACTACATCTAC SEQ ID NO: 376 TGTATTGATGCTGGTAGTAGTGGTAGCACTTACTACGCGACCTGGGTGAATGGC SEQ ID NO: 377 TGGGATTATGGTGGTAATGTTGGTTGGGGTTATGACTTG SEQ ID NO: 378 MDTRAPTQLLGLLLLWLPGARCAFELTQTPSSVEAAVGGTVTIKCQASQSISSYLAWYQQKPGQPPKFLIY RASTLASGVPSRFKGSGSGTEFTLTISDLECADAATYYCQSYYDSVSNP SEQ ID NO: 379 METGLRWLLLVAVLKGVQCQSLEESGGDLVKPEGSLTLTCKASGLDLGTYWFMCWVRQAPGKGLEWIA CIYTGSSGSTFYASWVNGRFTISKTSSTTVTLQMTSLTAADTATYFCARGYSGYGYFKL SEQ ID NO: 380 QASQSISSYLA SEQ ID NO: 381 RASTLAS SEQ ID NO: 382 QSYYDSVSNP SEQ ID NO: 383 TYWFMC SEQ ID NO: 384 CIYTGSSGSTFYASWVNG SEQ ID NO: 385 GYSGYGYFKL SEQ ID NO: 386 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCAGATGTGC ATTCGAATTGACCCAGACTCCATCCTCCGTGGAGGCAGCTGTGGGAGGCACAGTCACCATCAAGTGCC AGGCCAGTCAGAGCATTAGTAGTTACTTAGCCTGGTATCAGCAGAAACCAGGGCAGCCTCCCAAGTTC CTGATCTACAGGGCGTCCACTCTGGCATCTGGGGTCCCATCGCGATTCAAAGGCAGTGGATCTGGGAC AGAGTTCACTCTCACCATCAGCGACCTGGAGTGTGCCGATGCTGCCACTTACTACTGTCAAAGCTATTA TGATAGTGTTTCAAATCCT SEQ ID NO: 387 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGTTGGA GGAGTCCGGGGGAGACCTGGTCAAGCCTGAGGGATCCCTGACACTCACCTGCAAAGCCTCTGGACTCG ACCTCGGTACCTACTGGTTCATGTGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGCT TGTATTTATACTGGTAGTAGTGGTTCCACTTTCTACGCGAGCTGGGTGAATGGCCGATTCACCATCTCC AAAACCTCGTCGACCACGGTGACTCTGCAAATGACCAGTCTGACAGCCGCGGACACGGCCACTTATTT TTGTGCGAGAGGTTATAGTGGTTATGGTTATTTTAAGTTG

SEQ ID NO: 388 CAGGCCAGTCAGAGCATTAGTAGTTACTTAGCC SEQ ID NO: 389 AGGGCGTCCACTCTGGCATCT SEQ ID NO: 390 CAAAGCTATTATGATAGTGTTTCAAATCCT SEQ ID NO: 391 ACCTACTCTGGTTCATGTGC SEQ ID NO: 392 TGTATTTATACTGGTAGTAGTGGTTCCACTTTCTACGCGAGCTGGGTGAATGGC SEQ ID NO: 393 GGTTATAGTGGTTATGGTTATTTTAAGTTG SEQ ID NO: 394 MDTRAPTQLLGLLLLWLPGVTFAIEMTQSPFSVSAAVGGTVSISCQASQSVYKNNQLSWYQQKSGQPPKLL IYGASALASGVPSRFKGSGSGTEFTLTISDVQCDDAATYYCAGAITGSIDTDG SEQ ID NO: 395 METGLRWLLLVAVLKGVQCQSLEESGGDLVKPGASLTLTCTTSGFSFSSSYFICWVRQAPGKGLEWIACIY GGDGSTYYASWAKGRFTISKTSSTTVTLQMTSLTAADTATYFCAREWAYSQGYFGAFDL SEQ ID NO: 396 QASQSVYKNNQLS SEQ ID NO: 397 GASALAS SEQ ID NO: 398 AGATTGSIDTDG SEQ ID NO: 399 SSYFIC SEQ ID NO: 400 CIYGGDGSTYYASWAKG SEQ ID NO: 401 EWAYSQGYFGAFDL SEQ ID NO: 402 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGTCACATTTGCC ATCGAAATGACCCAGAGTCCATTCTCCGTGTCTGCAGCTGTGGGAGGCACAGTCAGCATCAGTTGCCA GGCCAGTCAGAGTGTTTATAAGAACAACCAATTATCCTGGTATCAGCAGAAATCAGGGCAGCCTCCCA AGCTCCTGATCTATGGTGCATCGGCTCTGGCATCTGGGGTCCCATCGCGGTTCAAAGGCAGTGGATCT GGGACAGAGTTCACTCTCACCATCAGCGACGTGCAGTGTGACGATGCTGCCACTTACTACTGTGCAGG CGCTATTACTGGTAGTATTGATACGGATGGT SEQ ID NO: 403 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGTTGGA GGAGTCCGGGGGAGACCTGGTCAAGCCTGGGGCATCCCTGACACTCACCTGCACAACTTCTGGATTCT CCTTCAGTAGCAGCTACTTCATTTGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGATCGCA TGCATTTATGGTGGTGATGGCAGCACATACTACGCGAGCTGGGCGAAAGGCCGATTCACCATCTCCAA AACCTCGTCGACCACGGTGACGCTGCAAATGACCAGTCTGACAGCCGCGGACACGGCCACCTATTTCT GTGCGAGAGAATGGGCATATAGTCAAGGTTATTTTGGTGCTTTTGATCTC SEQ ID NO: 404 CAGGCCAGTCAGAGTGTTTATAAGAACAACCAATTATCC SEQ ID NO: 405 GGTGCATCGGCTCTGGCATCT SEQ ID NO: 406 GCAGGCGCTATTACTGGTAGTATTGATACGGATGGT SEQ ID NO: 407 AGCAGCTACTTCATTTGC SEQ ID NO: 408 TGCATTTATGGTGGTGATGGCAGCACATACTACGCGAGCTGGGCGAAAGGC SEQ ID NO: 409 GAATGGGCATATAGTCAAGGTTATTTTGGTGCTTTTGATCTC SEQ ID NO: 410 MDTRAPTQLLGLLLLWLPGARCDVVMTQTPASVEAAVGGTVTIKCQASEDISSYLAWYQQKPGQPPKLLI YAASNLESGVSSRFKGSGSGTEYTLTISDLECADAATYYCQCTYGTISISDGNA SEQ ID NO: 411 METGLRWLLLVAVLKGVQCQSVEESGGRLVTPGTPLTLTCTVSGFSLSSYFMTWVRQAPGEGLEYIGFINP GGSAYYASWVKGRFTISKSSTTVDLKITSPTTEDTATYFCARVLIVSYGAFTI SEQ ID NO: 412 QASEDISSYLA SEQ ID NO: 413 AASNLES SEQ ID NO: 414 QCTYGTISISDGNA SEQ ID NO: 415 SYFMT SEQ ID NO: 416 FINPGGSAYYASWVKG SEQ ID NO: 417 VLIVSYGAFTI SEQ ID NO: 418 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCAGATGTGA TGTTGTGATGACCCAGACTCCAGCCTCCGTGGAGGCAGCTGTGGGAGGCACAGTCACCATCAAGTGCC AGGCCAGTGAGGATATTAGTAGCTACTTAGCCTGGTATCAGCAGAAACCAGGGCAGCCTCCCAAGCTC CTGATCTATGCTGCATCCAATCTGGAATCTGGGGTCTCATCGCGATTCAAAGGCAGTGGATCTGGGAC AGAGTACACTCTCACCATCAGCGACCTGGAGTGTGCCGATGCTGCCACCTATTACTGTCAATGTACTTA TGGTACTATTTCTATTAGTGATGGTAATGCT SEQ ID NO: 419 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAATGTCAGTCGGTGGA GGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTGCACAGTCTCTGGATTCT CCCTCAGTAGCTACTTCATGACCTGGGTCCGCCAGGCTCCAGGGGAGGGGCTGGAATACATCGGATTC ATTAATCCTGGTGGTAGCGCTTACTACGCGAGCTGGGTGAAAGGCCGATTCACCATCTCCAAGTCCTC GACCACGGTAGATCTGAAAATCACCAGTCCGACAACCGAGGACACGGCCACCTATTTCTGTGCCAGGG TTCTGATTGTTTCTTATGGAGCCTTTACCATC SEQ ID NO: 420 CAGGCCAGTGAGGATATTAGTAGCTACTTAGCC SEQ ID NO: 421 GCTGCATCCAATCTGGAATCT SEQ ID NO: 422 CAATGTACTTATGGTACTATTTCTATTAGTGATGGTAATGCT SEQ ID NO: 423 AGCTACTTCATGACC SEQ ID NO: 424 TTCATTAATCCTGGTGGTAGCGCTTACTACGCGAGCTGGGTGAAAGGC SEQ ID NO: 425 GTTCTGATTGTTTCTTATGGAGCCTTTACCATC SEQ ID NO: 426 MDTRAPTQLLGLLLLWLPGARCDVVMTQTPASVSAAVGGTVTIKCQASEDIESYLAWYQQKPGQPPKLII YGASNLESGVSSRFKGSGSGTEFILTISDLECADAATYYCQCTYGIISISDGNA SEQ ID NO: 427 METGLRWLLLVAVLKGVQCQSVEESGGRLVTPGTPLTLTCTVSGFSLSSYFMTWVRQAPGEGLEYIGIMN TGDNAYYASWAKGRFTISKTSTTVDLKITSPTTEDTATYFCARVLVVAYGAFNI SEQ ID NO: 428 QASEDIESYLA SEQ ID NO 429 GASNLES SEQ ID NO: 430 QCTYGIISISDGNA SEQ ID NO: 431 SYFMT SEQ ID NO: 432 FMNTGDNAYYASWAKG SEQ ID NO: 433 VLVVAYGAFNI SEQ ID NO: 434 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCAGATGTGA TGTTGTGATGACCCAGACTCCAGCCTCCGTGTCTGCAGCTGTGGGAGGCACAGTCACCATCAAGTGCC AGGCCAGTGAGGACATTGAAAGCTATCTAGCCTGGTATCAGCAGAAACCAGGGCAGCCTCCCAAGCT CCTGATCTATGGTGCATCCAATCTGGAATCTGGGGTCTCATCGCGGTTCAAAGGCAGTGGATCTGGGA CAGAGTTCACTCTCACCATCAGCGACCTGGAGTGTGCCGATGCTGCCACTTACTATTGTCAATGCACTT ATGGTATTATTAGTATTAGTGATGGTAATGCT SEQ ID NO: 435 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGGTGGA GGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTGCACAGTGTCTGGATTCT CCCTCAGTAGCTACTTCATGACCTGGGTCCGCCAGGCTCCAGGGGAGGGGCTGGAATACATCGGATTC ATGAATACTGGTGATAACGCATACTACGCGAGCTGGGCGAAAGGCCGATTCACCATCTCCAAAACCTC GACCACGGTGGATCTGAAAATCACCAGTCCGACAACCGAGGACACGGCCACCTATTTCTGTGCCAGGG TTCTTGTTGTTGCTTATGGAGCCTTTAACATC SEQ ID NO: 436 CAGGCCAGTGAGGACATTGAAAGCTATCTAGCC SEQ ID NO: 437 GGTGCATCCAATCTGGAATCT SEQ ID NO: 438 CAATGCACTTATGGTATTATTAGTATTAGTGATGGTAATGCT SEQ ID NO: 439 AGCTACTTCATGACC SEQ ID NO: 440 TTCATGAATACTGGTGATAACGCATACTACGCGAGCTGGGCGAAAGGC SEQ ID NO: 441 GTTCTTGTTGTTGCTTATGGAGCCTTTAACATC SEQ ID NO: 442 MDTRAPTQLLGLLLLWLPGATFAAVLTQTPSPVSEPVGGTVSISCQSSKSVMNNNYLAWYQQKPGQPPKL LIYGASNLASGVPSRFSGSGSGTQFTLTISDVQCDDAATYYCQGGYTGYSDHGT SEQ ID NO: 443 METGLRWLLLVAVLKGVQCQSVELSGGRLVKPDETLTLTCTVSGIDLSSYPMNWVRQAPGKGLEWIGFIN TGGTIVYASWAKGRFTISKTSTTVDLKMTSPTTEDTATYFCARGSYVSSGYAYYFNV SEQ ID NO: 444 QSSKSVMNNNYLA SEQ ID NO: 445 GASNLAS SEQ ID NO: 446 QGGYTGYSDHGT SEQ ID NO: 447 SYPMN SEQ ID NO: 448 FINTGGTIVYASWAKG SEQ ID NO: 449 GSYVSSGYAYYFNV SEQ ID NO: 450 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCACATTTGC CGCCGTGCTGACCCAGACTCCATCTCCCGTGTCTGAACCTGTGGGAGGCACAGTCAGCATCAGTTGCC AGTCCAGTAAGAGTGTTATGAATAACAACTACTTAGCCTGGTATCAGCAGAAACCAGGGCAGCCTCCC AAGCTCCTGATCTATGGTGCATCCAATCTGGCATCTGGGGTCCCATCACGGTTCAGCGGCAGTGGATCT GGGACACAGTTCACTCTCACCATCAGCGACGTGCAGTGTGACGATGCTGCCACTTACTACTGTCAAGG CGGTTATACTGGTTATAGTGATCATGGGACT SEQ ID NO: 451 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGGTGGA GGAGTCCGGGGGTCGCCTGGTCAAGCCTGACGAAACCCTGACACTCACCTGCACAGTCTCTGGAATCG ACCTCAGTAGCTATCCAATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAATGGAATCGGATTC ATTAATACTGGTGGTACCATAGTCTACGCGAGCTGGGCAAAAGGCCGATTCACCATCTCCAAAACCTC GACCACGGTGGATCTGAAAATGACCAGTCCGACAACCGAGGACACGGCCACCTATTTCTGTGCCAGAG GCAGTTATGTTTCATCTGGTTATGCCTACTATTTTAATGTC SEQ ID NO: 452 CAGTCCAGTAAGAGTGTTATGAATAACAACTACTTAGCC SEQ ID NO: 453 GGTGCATCCAATCTGGCATCT SEQ ID NO: 454 CAAGGCGGTTATACTGGTTATAGTGATCATGGGACT SEQ ID NO: 455 AGCTATCCAATGAAC

SEQ ID NO: 456 TTCATTAATACTGGTGGTACCATAGTCTACGCGAGCTGGGCAAAAGGC SEQ ID NO: 457 GGCAGTTATGTTTCATCTGGTTATGCCTACTATTTTAATGTC SEQ ID NO: 458 MDTRAPTQLLGLLLLWLPGATFAAVLTQTPSPVSAAVGGTVSISCQSSQSVYNNNWLSWFQQKPOQPPKL LTYKASTLASGVPSRFKGSGSGTQFTLTISDVQCDDVATYYCAGGYLDSVI SEQ ID NO: 459 METGLRWLLLVAVLKGVQCQSVEESGGRLVTPGTPLTLTCTVSGFSLSTYSINWVRQAPGKGLEWIGIIAN SGTTFYANWAKGRFTVSKTSTTVDLKITSPTTEDTATYFCARESGMYNEYGKFNI SEQ ID NO: 460 QSSQSVYNNNWLS SEQ ID NO: 461 KASTLAS SEQ ID NO: 462 AGGYLDSVI SEQ ID NO: 463 TYSIN SEQ ID NO: 464 IIANSGTTFYANWAKG SEQ ID NO: 465 ESGMYNEYGKFNI SEQ ID NO: 466 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCACATTTGC CGCCGTGCTGACCCAGACTCCATCTCCCGTGTCTGCAGCTGTGGGAGGCACAGTCAGCATCAGTTGCC AGTCCAGTCAGAGTGTTTATAATAACAACTGGTTATCCTGGTTTCAGCAGAAACCAGGGCAGCCTCCC AAGCTCCTGATCTACAAGGCATCCACTCTGGCATCTGGGGTCCCATCGCGGTTCAAAGGCAGTGGATC TGGGACACAGTTCACTCTCACCATCAGCGACGTGCAGTGTGACGATGTTGCCACTTACTACTGTGCGG GCGGTTATCTTGATAGTGTTATT SEQ ID NO: 467 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGGTGGA GGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTGCACAGTCTCTGGATTCT CCCTCAGTACCTATTCAATAAACTGGGTCCGCCAGGCTCCAGGGAAGGGCCTGGAATGGATCGGATC ATTGCTAATAGTGGTACCACATTCTACGCGAACTGGGCGAAAGGCCGATTCACCGTCTCCAAAACCTC GACCACGGTGGATCTGAAAATCACCAGTCCGACAACCGAGGACACGGCCACCTATTTCTGTGCCAGAG AGAGTGGAATGTACAATGAATATGGTAAATTTAACATC SEQ ID NO: 468 CAGTCCAGTCAGAGTGTTTATAATAACAACTGGTTATCC SEQ ID NO: 469 AAGGCATCCACTCTGGCATCT SEQ ID NO: 470 GCGGGCGGTTATCTTGATAGTGTTATT SEQ ID NO: 471 ACCTATTCAATAAAC SEQ ID NO: 472 ATCATTGCTAATAGTGGTACCACATTCTACGCGAACTGGGCGAAAGGC SEQ ID NO: 473 GAGAGTGGAATGTACAATGAATATGGTAAATTTAACATC SEQ ID NO: 474 MDTRAPTQLLGLLLLWLPGARCASDMTQTPSSVSAAVGGTVTINCQASENIYSFLAWYQQKPGQPPKLLIF KASTLASGVSSRFKGSGSGTQFTLTISDLECDDAATYYCQQGATVYDIDNN SEQ ID NO: 475 METGLRWLLLVAVLKGVQCQSLEESGGRLVTPGTPLTLTCTVSGIDLSAYAMIWVRQAPGEGLEWITIIYP NGITYYANWAKGRFTVSKTSTAMDLKITSPTTEDTATYFCARDAFSSKNAYWGYFNV SEQ ID NO: 476 QASENIYSFLA SEQ ID NO: 477 KASTLAS SEQ ID NO: 478 QQGATVYDIDNN SEQ ID NO: 479 AYAMI SEQ ID NO: 480 IIYPNGITYYANWAKG SEQ ID NO: 481 DAESSKNAYWGYFNV SEQ ID NO: 482 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCAGATGTGC CTCTGATATGACCCAGACTCCATCCTCCGTGTCTGCAGCTGTGGGAGGCACAGTCACCATCAATTGCCA GGCCAGTGAGAACATTTATAGCTTTTTGGCCTGGTATCAGCAGAAACCAGGGCAGCCTCCCAAGCTCC TGATCTTCAAGGCTTCCACTCTGGCATCTGGGGTCTCATCGCGGTTCAAAGGCAGTGGATCTGGGACA CAGTTCACTCTCACCATCAGCGACCTGGAGTGTGACGATGCTGCCACTTACTACTGTCAACAGGGTGCT ACTGTGTATGATATTGATAATAAT SEQ ID NO: 483 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGCTGGA GGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTGCACAGTTTCTGGAATCG ACCTCAGTGCCTATGCAATGATCTGGGTCCGCCAGGCTCCAGGGGAGGGGCTGGAATGGATCACAATC ATTTATCCTAATGGTATCACATACTACGCGAACTGGGCGAAAGGCCGATTCACCGTCTCCAAAACCTC GACCGCGATGGATCTGAAAATCACCAGTCCGACAACCGAGGACACGGCCACCTATTTCTGTGCCAGAG ATGCAGAAAGTAGTAAGAATGCTTATTGGGGCTACTTTAACGTC SEQ ID NO: 484 CAGGCCAGTGAGAACATTTATAGCTTTTTGGCC SEQ ID NO: 485 AAGGCTTCCACTCTGGCATCT SEQ ID NO: 486 CAACAGGGTGCTACTGTGTATGATATTGATAATAAT SEQ ID NO: 487 GCCTATGCAATGATC SEQ ID NO: 488 ATCATTTATCCTAATGGTATCACATACTACGCGAACTGGGCGAAAGGC SEQ ID NO: 489 GATGCAGAAAGTAGTAAGAATGCTTATTGGGGCTACTTTAACGTC SEQ ID NO: 490 MDTRAPTQLLGLLLLWLPGARCASDMTQTPSSVSAAVGGTVTINCQASENIYSFLAWYQQKPGQPPKLLIF RASTLASGVSSRFKGSGSGTQFTLTISDLECDDAATYYCQQGATVYDIDNN SEQ ID NO: 491 METGLRWLLLVAVLKGVQCQSLEESGGRLVTPGTPLTLTCTVSGIDLSAYAMIWVRQAPGEGLEWITIIYP NGITYYANWAKGRFTVSKTSTAMDLKITSPTTEDTATYFCARDAESSKNAYWGYFNV SEQ ID NO: 492 QASENIYSFLA SEQ ID NO: 493 RASTLAS SEQ ID NO: 494 QQGATVYDIDNN SEQ ID NO: 495 AYAMI SEQ ID NO: 496 IIYPNGITYYANWAKG SEQ ID NO: 497 DAESSKNAYWGYFNV SEQ ID NO: 498 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCAGATGTGC CTCTGATATGACCCAGACTCCATCCTCCGTGTCTGCAGCTGTGGGAGGCACAGTCACCATCAATTGCCA GGCCAGTGAGAACATTTATAGCTTTTTGGCCTGGTATCAGCAGAAACCAGGGCAGCCTCCCAAGCTCC TGATCTTCAGGGCTTCCACTCTGGCATCTGGGGTCTCATCGCGGTTCAAAGGCAGTGGATCTGGGACA CAGTTCACTCTCACCATCAGCGACCTGGAGTGTGACGATGCTGCCACTTACTACTGTCAACAGGGTGCT ACTGTGTATGATATTGATAATAAT SEQ ID NO: 499 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGCTGGA GGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTGCACAGTTTCTGGAATCG ACCTCAGTGCCTATGCAATGATCTGGGTCCGCCAGGCTCCAGGGGAGGGGCTGGAATGGATCACAATC ATTTATCCTAATGGTATCACATACTACGCGAACTGGGCGAAAGGCCGATTCACCGTCTCCAAAACCTC GACCGCGATGGATCTGAAAATCACCAGTCCGACAACCGAGGACACGGCCACCTATTTCTGTGCCAGAG ATGCAGAAAGTAGTAAGAATGCTTATTGGGGCTACTTTAACGTC SEQ ID NO: 500 CAGGCCAGTGAGAACATTTATAGCTTTTGGCC SEQ ID NO: 501 AGGGCTTCCACTCTGGCATCT SEQ ID NO: 502 CAACAGGGTGCTACTGTGTATGATATTGATAATAAT SEQ ID NO: 503 GCCTATGCAATGATC SEQ ID NO: 504 ATCATTTATCCTAATGGTATCACATACTACGCGAACTGGGCGAAAGGC SEQ ID NO: 505 GATGCAGAAAGTAGTAAGAATGCTTATTGGGGCTACTTTAACGTC SEQ ID NO: 506 MDTRAPTQLLGLLLLWLPGATFAIEMTQTPSPVSAAVGGTVTINCQASESVFNNMLSWYQQKPGHSPKLLI YDASDLASGVPSRFKGSGSGTQFTLTISGVECDDAATYYCAGYKSDSNDGDNV SEQ ID NO: 507 METGLRWLLLVAVLKGVQCQSLEESGGRLVTPGTPLTLTCTVSGFSLNRNSITWVRQAPGEGLEWIGIITGS GRTYYANWAKGRFTISKTSTTVDLKMTSPTTEDTATYFCARGHPGLGSGNI SEQ ID NO: 508 QASESVFNNMLS SEQ ID NO: 509 DASDLAS SEQ ID NO: 510 AGYKSDSNDGDNV SEQ ID NO: 511 RNSIT SEQ ID NO: 512 IITCSGRTYYANWAKD SEQ ID NO: 513 GHPGLGSGNI SEQ ID NO: 514 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCACATTTGC CATTGAAATGACCCAGACTCCATCCCCCGTGTCTGCCGCTGTGGGAGGCACAGTCACCATCAATTGCC AGGCCAGTGAGAGTGTTTTTAATAATATGTTATCCTGGTATCAGCAGAAACCAGGGCACTCTCCTAAG CTCCTGATCTATGATGCATCCGATCTGGCATCTGGGGTCCCATCGCGGTTCAAAGGCAGTGGATCTGG GACACAGTTCACTCTCACCATCAGTGGCGTGGAGTGTGACGATGCTGCCACTTACTATTGTGCAGGGT ATAAAAGTGATAGTAATGATGGCGATAATGTT SEQ ID NO: 515 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGCTGGA GGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTGCACAGTCTCTGGATTCT CCCTCAACAGGAATTCAATAACCTGGGTCCGCCAGGCTCCAGGGGAGGGGCTGGAATGGATCGGAAT CATTACTGGTAGTGGTAGAACGTACTACGCGAACTGGGCAAAAGGCCGATTCACCATCTCCAAAACCT CGACCACGGTGGATCTGAAAATGACCAGTCCGACAACCGAGGACACGGCCACCTATTTCTGTGCCAGA GGCCATCCTGGTCTTGGTAGTGGTAACATC SEQ ID NO: 516 CAGGCCAGTGAGAGTGTTTTTAATAATATGTTATCC SEQ ID NO: 517 GATGCATCCGATCTGGCATCT SEQ ID NO: 518 GCAGGGTATAAAAGTGATAGTAATGATGGCCATAATGTT SEQ ID NO: 519 AGGAATTCAATAACC SEQ ID NO: 520 ATCATTACTGGTAGTGGTAGAACGTACTACGCGAACTGGGCAAAAGGC SEQ ID NO: 521 GGCCATCCTGGTCTTGGTAGTGGTAACATC SEQ ID NO: 522 MDTRAPTQLLGLLLLWLPGATFAQVLTQTASSVSAAVGGTVTINCQSSQSVYNNYLSWYQQKPGQPPKLL IYTASSLASGVPSRFKGSGSGTQFTLTISEVQCDDAATYYCQOYYSGPIIT

SEQ ID NO: 523 METGLRWLLLVAVLKGVQCQSLEESGGRLVTPGTPLTLTCTASGFSLNNYYIQWVRQAPGEGLEWIGIIYA GGSAYYATWANGRFTIAKTSSTTVDLKMTSLTTEDTATYFCARGTFDGYEL SEQ ID NO: 524 QSSQSVYNNYLS SEQ ID NO: 525 TASSLAS SEQ ID NO: 526 QGYYSGPIIT SEQ ID NO: 527 NYYIQ SEQ ID NO: 528 IIYAGGSAYYATWANG SEQ ID NO: 529 GTFDGYEL SEQ ID NO: 530 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCACATTTGC GCAAGTGCTGACCCAGACTGCATCGTCCGTGTCTGCAGCTGTGGGAGGCACAGTCACCATCAATTGCC AGTCCAGTCAGAGTGTTTATAATAACTACTTATCCTGGTATCAGCAGAAACCAGGGCAGCCTCCCAAG CTCCTGATCTATACTGCATCCAGCCTGGCATCTGGGGTCCCATCGCGGTTCAAAGGCAGTGGATCTGG GACACAGTTCACTCTCACCATCAGCGAAGTGCAGTGTGACGATGCTGCCACTTACTACTGTCAAGGCT ATTATAGTGGTCCTATAATTACT SEQ ID NO: 531 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGCTGGA GGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTGCACAGCCTCTGGATTCT CCCTCAATAACTACTACATACAATGGGTCCGCCAGGCTCCAGGGGAGGGGCTGGAATGGATCGGGATC ATTTATGCTGGTGGTAGCGCATACTACGCGACCTGGGCAAACGCCCGATTCACCATCGCCAAAACCTC GTCGACCACGGTGGATCTGAAGATGACCAGTCTGACAACCGAGGACACGGCCACCTATTTCTGTGCCA GAGGGACATTTGATGGTTATGAGTTG SEQ ID NO: 532 CAGTCCAGTCAGAGTGTTTATAATAACTACTTATCC SEQ ID NO: 533 ACTGCATCCAGCCTGGCATCT SEQ ID NO: 534 CAAGGCTATTATAGTGGTCCTATAATTACT SEQ ID NO: 535 AACTACTACATACAA SEQ ID NO: 536 ATCATTTATGCTGGTGGTAGCGCATACTACGCGACCTGGGCAAACGGC SEQ ID NO: 537 GGGACATTTGATGGTTATGAGTTG SEQ ID NO: 538 MDTRAPTQLLGLLLLWLPGATFAQVLTQTPSPVSVPVGDTVTISCQSSFSVYSNNLLSWYQQKPGQPPKLLI YRASNLASGVPSRFKGSGSGTQFTLTISGAQCDDAATYYCQGYYSGVINS SEQ ID NO: 539 METGLRWLLLVAVLKGVQCQSVEESGGRLVTPGTPLTLTCTVSGFSLSSYFMSWVRQAPGEGLEYIGFINP GGSAYYASWASGRLTISKTSTTVDLKITSPTTEDTATYFCARILIVSYGAFTI SEQ ID NO: 540 QSSESVYSNNLLS SEQ ID NO: 541 RASNLAS SEQ ID NO: 542 QGYYSGVINS SEQ ID NO: 543 SYFMS SEQ ID NO: 544 FINPGGSAYYASWASG SEQ ID NO: 545 ILIVSYGAFTI SEQ ID NO: 546 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCACATTTGC CCAAGTGCTGACCCAGACTCCATCCCCTGTGTCTGTCCCTGTGGGAGACACAGTCACCATCAGTTGCCA GTCCAGTGAGAGCGTTTATAGTAATAACCTCTTATCCTGGTATCAGCAGAAACCAGGGCAGCCTCCCA AGCTCCTGATCTACAGGGCATCCAATCTGGCATCTGGTGTCCCATCGCGGTTCAAAGGCAGTGGATCT GGGACACAGTTCACTCTCACCATCAGCGGCGCACAGTGTGACGATGCTGCCACTTACTACTGTCAAGG CTATTATAGTGGTGTCATTAATAGT SEQ ID NO: 547 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGGTGGA GGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTGCACAGTGTCTGGATTCT CCCTCAGTAGCTACTTCATGAGCTGGGTCCGCCAGGCTCCAGGGGAGGGGCTGGAATACATCGGATTC ATTAATCCTGGTGGTAGCGCATACTACCGCGAGCTGGGCGAGTGGCCGACTCACCATCTCCAAAACCTC GACCACGGTAGATCTGAAAATCACCAGTCCGACAACCGAGGACACGGCCACCTATTTCTGTGCCAGGA TTCTTATTGTTTCTTATGGAGCCTTTACCATC SEQ ID NO: 548 CAGTCCAGTGAGAGCGTTTATAGTAATAACCTCTTATCC SEQ ID NO: 549 AGGGCATCCAATCTGGCATCT SEQ ID NO: 550 CAAGGCTATTATAGTGGTGTCATTAATAGT SEQ ID NO: 551 AGCTACTTCATGAGC SEQ ID NO: 552 TTCATTAATCCTGGTGGTAGCGCATACTACGCGAGCTGGGCGAGTGGC SEQ ID NO: 553 ATTCTTATTGTTTCTTATGGAGCCTTTACCATC SEQ ID NO: 554 MDTRAPTQLLGLLLLWLPGARCAYDMTQTPASVEVAVGGTVTIKCQATESIGNELSWYQQKPGQAPKLLI YSASTLASGVPSRFKGSGSGTQFTLTITGVECDDAATYYCQQGYSSANIDNA SEQ ID NO: 555 METGLRWLLLVAVLKGVQCQSLEESGGRLVTPGTPLTLTCTVSGFSLSKYYMSWVRQAPEKGLKYIGYID STTVNTYYATWARGRFTISKTSTTVDLKITSPTSEDTATYFCARGSTYFTDGGIIRLDL SEQ ID NO: 556 QATESIGNELS SEQ ID NO: 557 SASTLAS SEQ ID NO: 558 QQGYSSANIDNA SEQ ID NO: 559 KYYMS SEQ ID NO: 560 YIDSTTVNTYYATWARG SEQ ID NO: 561 GSTYFTDGGHRLDL SEQ ID NO: 562 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCAGATGTGC CTATGATATGACCCAGACTCCAGCCTCTGTGGAGGTAGCTGTGGGAGGCACAGTCACCATCAAGTGCC AGGCCACTGAGAGCATTGGCAATGAGTTATCCTGGTATCAGCAGAAACCAGGGCAGGCTCCCAAGCTC CTGATCTATTCTGCATCCACTCTGGCATCTGGGGTCCCATCGCGGTTCAAAGGCAGTGGATCTGGGACA CAGTTCACTCTCACCATCACCGGCGTGGAGTGTGATGATGCTGCCACTTACTACTGTCAACAGGGTTAT AGTAGTGCTAATATTGATAATGCT SEQ ID NO: 563 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGCTGGA GGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTGCACCGTCTCTGGATTCT CCCTCAGTAAGTACTACATGAGCTGGGTCCGCCAGGCTCCAGAGAAGGGGCTGAAATACATCGGATAC ATTGATAGTACTACTGTTAATACATACTACGCGACCTGGGCGAGAGGCCGATTCACCATCTCCAAAAC CTCGACCACGGTGGATCTGAAGATCACCAGTCCGACAAGTGAGGACACGGCCACCTATTTCTGTGCCA GAGGAAGTACTTATTTTACTGATGGAGGCCATCGGTTGGATCTC SEQ ID NO: 564 CAGGCCACTGAGAGCATTGGCAATGAGTTATCC SEQ ID NO: 565 TCTGCATCCACTCTGGCATCT SEQ ID NO: 566 CAACAGGGTTATAGTAGTGCTAATATTGATAATGCT SEQ ID NO: 567 AAGTACTACATGAGC SEQ ID NO: 568 TACATTGATAGTACTACTGTTAATACATACTACGCGACCTGGGCGAGAGGC SEQ ID NO: 569 GGAAGTACTTATTTTACTGATGGAGGCCATCGGTTGGATCTC SEQ ID NO: 570 MDTRAPTQLLGLLLLWLPGARCAYDMTQTPASVEVAVGGTVTIKCQATESIGNELSWYQQKPGQAPKLLI YSASTLASGVPSRFKGSGSGTQFTLTITGVECDDAATYYCQQGYSSANIDNA SEQ ID NO: 571 METGLRWLLLVAVLKGVQCQSLEESGGRLVTPGTPLTLTCTVSGFSLSTYNMGWVRQAPGKGLEWIGSITI DGRTYYASWAKGRFTVSKSSTTVDLKMTSLTTGDTATYFCARILIVSYGAFTI SEQ ID NO: 572 QATESIGNELS SEQ ID NO: 573 SASTLAS SEQ ID NO: 574 QQGYSSANIDNA SEQ ID NO: 575 TYNMG SEQ ID NO: 576 SITIDGRTYYASWAKG SEQ ID NO: 577 ILIVSYGAFTI SEQ ID NO: 578 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCAGATGTGC CTATGATATGACCCAGACTCCAGCCTCTGTGGAGGTAGCTGTGGGAGGCACAGTCACCATCAAGTGCC AGGCCACTGAGAGCATTGGCAATGAGTTATCCTGGTATCAGCAGAAACCAGGGCAGGCTCCCAAGCTC CTGATCTATTCTGCATCCACTCTGGCATCTGGGGTCCCATCGCGGTTCAAAGGCAGTGGATCTGGGACA CAGTTCACTCTCACCATCACCGGCGTGGAGTGTGATGATGCTGCCACTTACTACTGTCAACAGGGTTAT AGTAGTGCTAATATTGATAATGCT SEQ ID NO: 579 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGCTGGA GGAGTCCGGGGGTCGCCTGGTAACGCCTGGGACACCCCTGACACTCACCTGCACAGTCTCTGGATTCT CCCTCAGTACCTACAACATGGGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAATGGATCGGAAG TATTACTATTGATGGTCGCACATACTACGCGAGCTGGGCGAAAGGCCGATTCACCGTCTCCAAAAGCT CGACCACGGTGGATCTGAAAATGACCAGTCTGACAACCGGGGACACGGCCACCTATTTCTGTGCCAGG ATTCTTATTGTTTCTTATGGGGCCTTTACCATC SEQ ID NO: 580 CAGGCCACTGAGAGCATTGGCAATGAGTTATCC SEQ ID NO: 581 TCTGCATCCACTCTGGCATCT SEQ ID NO: 582 CAACAGGGTTATAGTAGTGCTAATATTGATAATGCT SEQ ID NO: 583 ACCTACAACATGGGC SEQ ID NO: 584 AGTATTACTATTGATGGTCGCACATACTACGCGAGCTGGGCGAAAGGC SEQ ID NO: 585 ATTCTTATTGTTTCTTATGGGGCCTTTACCATC SEQ ID NO: 586 VAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTL SKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC SEQ ID NO: 587 GTGGCTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTT GTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCA ATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGC ACCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGG GCCTGAGCTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGT SEQ ID NO: 588 ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP SSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV VVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYASTYRVVSVLTVLIIQDWLNGKEYKCKVSNKALPA

PIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK SEQ ID NO: 589 GCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGC GGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCC TGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGG TGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAAC ACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAG CACCTGAACTCCTGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCT CCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAAC TGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACGCCAGCA CGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGC AAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCC GAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGAC CTGCCTGGTCAAAGGCCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAG AACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACC GTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAA CCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA SEQ ID NO: 590 VPPGEDSKDVAAPHR SEQ ID NO: 591 GEDSKDVAAPHRQPL SEQ ID NO: 592 SKDVAAPHRQPLTSS SEQ ID NO: 593 VAAPHRQPLESSERI SEQ ID NO: 594 PHRQPLTSSERIDKQ SEQ ID NO: 595 QPLTSSERIDKQIRY SEQ ID NO: 596 TSSERIDKQIRYILD SEQ ID NO: 597 ERIDKQIRYILDGIS SEQ ID NO: 598 DKQIRYILDGISALR SEQ ID NO: 599 IRYILDGISALRKET SEQ ID NO: 600 ILDGISALRKETCNK SEQ ID NO: 601 GISALRKETCNKSNM SEQ ID NO: 602 ALRKETCNKSNMCES SEQ ID NO: 603 KETCNKSNMCESSKE SEQ ID NO: 604 CNKSNMCESSKEALA SEQ ID NO: 605 SNMCESSKEALAENN SEQ ID NO: 606 CESSKEALAENNLNL SEQ ID NO: 607 SKEALAENNLNLPKM SEQ ID NO: 608 ALAENNLNLPKMAEK SEQ ID NO: 609 ENNLNLPKMAEKDGC SEQ ID NO: 610 LNLPKMAEKDGCFQS SEQ ID NO: 611 PKMAEKDGCFQSGFN SEQ ID NO: 612 AEKDGCFQSGFNEET SEQ ID NO: 613 DGCFQSGFNEETCLV SEQ ID NO: 614 FQSGFNEETCLVKII SEQ ID NO: 615 GFNEETCLVKIITGL SEQ ID NO: 616 EETCLVKIITGLLEF SEQ ID NO: 617 CLVKIITGLLEFEVY SEQ ID NO: 618 KIITGLLEFEVYLEY SEQ ID NO: 619 TGLLEFEVYLEYLQN SEQ ID NO: 620 LEFEVYLEYLQNRFE SEQ ID NO: 621 EVYLEYLQNRFESSE SEQ ID NO: 622 LEYLQNRFESSEEQA SEQ ID NO: 623 LQNRFESSEEQARAV SEQ ID NO: 624 RFESSELQARAVQMS SEQ ID NO: 625 SSEEQARAVQMSTKV SEQ ID NO: 626 EQARAVQMSTKVLIQ SEQ ID NO: 627 RAVQMSTKVLIQFLQ SEQ ID NO: 628 QMSTKVLIQFLQKKA SEQ ID NO: 629 TKVLIQFLQKKAKNL SEQ ID NO: 630 LIQFLQKKAKNLDAI SEQ ID NO: 631 FLQKKAKNLDAITTP SEQ ID NO: 632 KKAKNLDAITTPDPT SEQ ID NO: 633 KNLDAITTPDPTTNA SEQ ID NO: 634 DAITTPDPTTNASLL SEQ ID NO: 635 TTPDPTTNASLLTKL SEQ ID NO: 636 DPTTNASLLTKLQAQ SEQ ID NO: 637 TNASLLTKLQAQNQW SEQ ID NO: 638 SLLTKLQAQNQWLQD SEQ ID NO: 639 TKLQAQNQWLQDMTT SEQ ID NO: 640 QAQNQWLQDMTTHLI SEQ ID NO: 641 NQWLQDMTTHLILRS SEQ ID NO: 642 LQDMTTHLILRSFKE SEQ ID NO: 643 MTTHLILRSFKEFLQ SEQ ID NO: 644 HLILRSFKEFLQSSL SEQ ID NO: 645 LRSFKEFLQSSLRAL SEQ ID NO: 646 FKEFLQSSLRALRQM SEQ ID NO: 647 AYDMTQTPASVSAAVGGTVTIKCOASQSINNELSWYQQKPGQRPKLLIYRASTLASGVSSRFKGSGSGTEF TLTISDLECADAATYYCQQGYSLRNIDNAFGGGTEVVVKR SEQ ID NO: 648 AIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFT LTISSLQPEDFATYYC SEQ ID NO: 649 DIQMTOSPSSLSASVGDRVTITCRASQGISNYLAWYQQKPGKVPKLLIYAASTLQSGVPSRFSGSGSGTDFT LTISSLQPEDVATYYC SEQ ID NO: 650 DIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTL TISSLQPDDFATYYC SEQ ID NO: 651 AIQMIQSPSSLSASVGDRVTITCQASQSINNELSWYQQKPGKAPKLLIYRASTLASGVPSRFSGSGSGTDFTL TISSLQPEDFATYYCQQGYSLRNIDNAFGGGTKVEIKR SEQ ID NO: 652 QSLEESGGRLVTPGTPLTLTCTASGFSLSNYYVTWVRQAPGKGLEWIGIIYGSDETAYATWAIGRFTISKTST TVDLKMTSLTAADTATYFCARDDSSDWDAKFNLWGQGTLVTVSS SEQ ID NO: 653 EVOLVESGGGLVQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSVIYSGGSTYYADSVKGRFTIS RDNSKNTLYLQMNSLRAEDTAVYYCAR SEQ ID NO: 654 EVQLVESGGGLIQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSVIYSGGSTYYADSVKGRFTISR DNSKNTLYLQMNSLRAEDTAVYYCAR SEQ ID NO: 655 EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSVIYSGGSSTYYADSVKGRFTIS RDNSKNTLYLQMNSLRAEDTAVYYCAK SEQ ID NO: 656 EVQLVESGGGLVQPGGSLRLSCAASGFSLSNYYVTWVRQAPGKGLEWVGIIYGSDETAYATWAIGRFTISR DNSKNTLYLQMNSLRAEDTAVYYCARDDSSDWDAKFNLWGQGTLVTVSS SEQ ID NO: 657 EVQLVESGGGLVQPGGSLRLSCAASGFSLSNYYVTWVRQAPGKGLEWVGIIYGSDETAYATSAIGRFTISR DNSKNTLYLQMNSLRAEDTAVYYCARDDSSDWDAKFNLWGQGTLVTVSS SEQ ID NO: 658 METGLRWLLLVAVLKGVQCQSLEESGGRLVTPGTPLTLTCTASGFSLSNYYVTWVRQAPGKGLEWIGIIYG SDETAYATSAIGRFTISKTSTTVDLKMTSLTAADTATYFCARDDSSDWDAKFNLWGQGTLVTVSSASTKGP SVFPLAPSSKSTSGGTAALGCLVK SEQ ID NO: 659 IIYGSDETAYATSAIG SEQ ID NO: 660 MDTRAPTQLLGLLLLWLPGARCAYDMTQTPASVSAAVGGTVTIKCQASQSINNELSWYQQKPGQRPKLLI YRASTLASGVSSRFKGSGSGTEFTLTISDLECADAATYYCQQGYSLRNIDNA SEQ ID NO: 661 METGLRWLLLVAVLKGVQCQSLEESGGRLVTPGTPLTLTCTASGFSLSNYYVTWVRQAPGKGLEWIGIIYG SDETAYATWAIGRFTISKTSTTVDLKMTSLTAADTATYFCARDDSSDWDAKFNL

SEQ ID NO: 662 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCAGATGTGC CTATGATATGACCCAGACTCCAGCCTCGGTGTCTGCAGCTGTGGGAGGCACAGTCACCATCAAGTGCC AGGCCAGTCAGAGCATTAACAATGAATTATCCTGGTATCAGCAGAAACCAGGGCAGCGTCCCAAGCTC CTGATCTATAGGGCATCCACTCTGGCATCTGGGGTCTCATCGCGGTTCAAAGGCAGTGGATCTGGGAC AGAGTTCACTCTCACCATCAGCGACCTGGAGTGTGCCGATGCTGCCACTTACTACTGTCAACAGGGTT ATAGTCTGAGGAATATTGATAATGCT SEQ ID NO: 663 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGCTGGA GGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTGCACAGCCTCTGGATTCT CCCTCAGTAACTACTACGTGACCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAATGGATCGGAATC ATTTATGGTAGTGATGAAACGGCCTACGCGACCTGGGCGATAGGCCGATTCACCATCTCCAAAACCTC GACCACGGTGGATCTGAAAATGACCAGTCTGACAGCCGCGGACACGGCCACCTATTTCTGTGCCAGAG ATGATAGTAGTGACTGGGATGCAAAATTTAACTTG SEQ ID NO: 664 EVQLVESGGGLVQPGGSLRLSCAASGFSLSNYYVTWVRQAPGKGLEWVGIIYGSDETAYATWAIGRFTISR DNSKNTLYLQMNSLRAEDTAVYYCARDDSSDWDAKFNLWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGG TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTK VDKRVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDG VEVHNAKTKPREEQYASTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNV FSCSVMHEALHNHYTQKSLSLSPGK SEQ ID NO: 665 EVQLVESGGGLVQPGGSLRLSCAASGFSLSNYYVTWVRQAPGKGLEWVGIIYGSDETAYATSAIGRFTISR DNSKNTLYLQMNSLRAEDTAVYYCARDDSSDWDAKFNLWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGG TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTK VDKRVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDG VEVHNAKTKPREEQYASTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNV FSCSVMHEALHNHYTQKSLSLSPGK SEQ ID NO: 666 IQMTQSPSSLSASVGDRVTITCQASQSINNELSWYQQKPGKAPKLLIYRASTLASGVPSRFSGSGSGTDFTLTI- SSLQPDDFATYYCQQGYSLRNIDNAFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREA KVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC SEQ ID NO: 667 MDTRAPTQLLGLLLLWLPGARCAYDMTQTPASVEVAVGGTVTINCQASETIYSWLSWYQQKPGQPPKLLI YQASDLASGVPSRFSGSGAGTEYTLTISGVQCDDAATYYCQQGYSGSNVDNV SEQ ID NO: 668 METGLRWLLLVAVLKGVQCQEQLKESGGRLVTPGTPLTLTCTASGFSLNDHAMGWVRQAPGRGLEYIGFI NSGGSARYASWAEGRFTISRTSTTVDLKMTSLTTEDTATYFCVRGGAVWSIHSFDP SEQ ID NO: 669 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCAGATGTGC CTATGATATGACCCAGACTCCAGCCTCTGTGGAGGTAGCGTGTGGGAGGCACAGTCACCATCAATTGCC AGGCCAGTGAGACCATTTACAGTTGGTTATCCTGGTATCAGCAGAAGCCAGGGCAGCCTCCCAAGCTC CTGATCTACCAGGCATCCGATCTGGCATCTGGGGTCCCATCGCGATTCAGCGGCAGTGGGGCTGGGAC AGAGTACACTCTCACCATCAGCGGCGTGCAGTGTGACGATGCTGCCACTTACTACTGTCAACAGGGTT ATAGTGGTAGTAATGTTGATAATGTT SEQ ID NO: 670 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGGAGCAGCT GAAGGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTTACCTGCACAGCCTCTGGAT TCTCCCTCAATGACCATGCAATGGGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAATACATCGGA TTCATTAATAGTGGTGGTAGCGCACGCTACGCGAGCTGGGCAGAAGGCCGATTCACCATCTCCAGAAC CTCGACCACGGTGGATCTGAAAATGACCAGTCTGACAACCGAGGACACGGCCACCTATTTCTGTGTCA GAGGGGGTGCTGTTTGGAGTATTCATAGTTTTGATCCC SEQ ID NO: 671 MDTRAPTQLLGLLLLWLPGATFAAVLTQTPSPVSAAVGGTVSISCQASQSVYDNNYLSWFQQKPGQPPKL LIYGASTLASGVPSRFVGSGSGTQFTLTITDVQCDDAATYYCAGVYDDDSDNA SEQ ID NO: 672 METGLRWLLLVAVLKGVQCQSLEESGGRLVTPGTPLTLTCTASGFSLSVYYMNWVRQAPGKGLEWIGFIT MSDNINYASWAKGRFTISKTSTTVDLKMTSPTTEDTATYFCARSRGWGTMCRLDL SEQ ID NO: 673 ATGGACACGAGGGCCCCCACTCAGCTGTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCACATTTGC CGCCGTGCTGACCCAGACTCCATCTCCCGTGTCTGCAGCTGTGGGAGGCACAGTCAGCATCAGTTGCC AGGCCAGTCAGAGTGTTTATGACAACAACTACTTATCCTGGTTTCAGCAGAAACCAGGGCAGCCTCCC AAGCTCCTGATCTATGGTGCATCCACTCTGGCATCTGGGGTCCCATCGCGGTTCGTGGGCAGTGGATCT GGGACACAGTTCACTCTCACCATCACAGACGTGCAGTGTGACGATGCTGCCACTTACTATTGTGCAGG CGTTTATGATGATGATAGTGATAATGCC SEQ ID NO: 674 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTGGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGCTGGA GGAGTCCGGGGGTCGCCTGGTCACCCCTGGGACACCCCTGACACTCACCTGCACAGCCTCTGGATTCT CCCTCAGTGTCTACTACATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAATGGATCGGATTC ATTACAATGAGTGATAATATAAATTACGCGAGCTGGGCGAAAGGCCGATTCACCATCTCCAAAACCTC GACCACGGTGGATCTGAAAATGACCAGTCCGACAACCGAGGACACGGCCACCTATTTCTGTGCCAGGA GTCGTGGCTGGGGTACAATGGGTCGGTTGGATCTC SEQ ID NO: 675 MDTRAPTQLLGLLLLWLPGAICDPVLTQTPSPVSAPVGGTVSISCQASQSVYENNYLSWFQQKPGQPPKLLI YGASTLDSGVPSRFKGSGSGTQFTLTITDVQCDDAATYYCAGVYDDDSDDA SEQ ID NO: 676 METGLRWLLLVAVLKGVQCQEQLKESGGGLVTPGGTLTLTCTASGFSLNAYYMNWVRQAPGKGLEWIGF ITLNNNVAYANWAKGRFTFSKTSTTVDLKMTSPTPEDTATYFCARSRGWGAMGRLDL SEQ ID NO: 677 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCATATGTGA CCCTGTGCTGACCCAGACTCCATCTCCCGTATCTGCACCTGTGGGAGGCACAGTCAGCATCAGTTGCCA GGCCAGTCAGAGTGTTTATGAGAACAACTATTTATCCTGGTTTCAGCAGAAACCAGGGCAGCCTCCCA AGCTCCTGATCTATGGTGCATCCACTCTGGATTCTGGGGTCCCATCGCGGTTCAAAGGCAGTGGATCTG GGACACAGTTCACTCTCACCATTACAGACGTGCAGTGTGACGATGCTGCCACTTACTATTGTGCAGGC GTTTATGATGATGATAGTGATGATGCC SEQ ID NO: 678 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTGGCTGTGCTCAAAGGTGTCCAGTGTCAGGAGCAGCT GAAGGAGTCCGGAGGAGGCCTGGTAACGCCTGGAGGAACCCTGACACTCACCTGCACAGCCTCTGGA TTCTCCCTCAATGCCTACTACATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAATGGATCGG ATTCATTACTCTGAATAATAATGTAGCTTACGCGAACTGGGCGAAAGGCCGATTCACCTTCTCCAAAA CCTCGACCACGGTGGATCTGAAAATGACCAGTCCGACACCCGAGGACACGGCCACCTATTTCTGTGCC AGGAGTCGTGGCTGGGGTGCAATGGGTCGGTTGGATCTC SEQ ID NO: 679 MDTRAPTQLLGLLLLWLPGATFAQVLTQTPSPVSAAVGGTVTINCQASQSVDDNNWLGWYQQKRGQPPK YLIYSASTLASGVPSRFKGSGSGTQFTLTISDLECDDAATYYCAGGFSGNIFA SEQ ID NO: 680 METGLRWLLLVAVLKGVQCQSVEESGGRLVTPGTPLTLTCTVSGFSLSSYAMSWVRQAPGKGLEWIGIIGG FGTTYYATWAKGRFTISKTSTTVDLRITSPTTEDTATYFCARGGPGNGGDI SEQ ID NO: 681 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCACATTTGC CCAAGTGCTGACCCAGACTCCATCGCCTGTGTCTGCAGCTGTGGGAGGCACAGTCACCATCAACTGCC AGGCCAGTCAGAGTGTTGATGATAACAACTGGTTAGGCTGGTATCAGCAGAAACGAGGGCAGCCTCC CAAGTACCTGATCTATTCTGCATCCACTCTGGCATCTGGGGTCCCATCGCGGTTCAAAGGCAGTGGATC TGGGACACAGTTCACTCTCACCATCAGCGACCTGGAGTGTGACGATGCTGCCACTTACTACTGTGCAG GCGGTTTTAGTGGTAATATCTTTGCT SEQ ID NO: 682 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGGTGGA GGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTGCACAGTCTCTGGCTTCT CCCTCAGTAGCTATGCAATGAGCTGGGTCCGCCAGGCTCCAGGAAAGGGGCTGGAGTGGATCGGAAT CATTGGTGGTTTTGGTACCACATACTACGCGACCTGGGCGAAAGGCCGATTCACCATCTCCAAAACCT CGACCACGGTGGATCTGAGAATCACCAGTCCGACAACCGAGGACACGGCCACCTATTTCTGTGCCAGA GGTGGTCCTGGTAATGGTGGTGACATC SEQ ID NO: 683 MDTRAPTQLLGLLLLWLPGATFAAVLTQTPSPVSVPVGGTVTIKCQSSQSVYNNFLSWYQQKPGQPPKLII YQASKLASGVPDRFSGSGSGTQFTLTISGVQCDDAATYYCLGGYDDDADNA SEQ ID NO: 684 METGLRWLLLVAVLKGVQCQSVEESGGRLVTPGTPLTLTCTVSGIDLSDYAMSWVRQAPGKGLEWIGIIY AGSGSTWYASWAKGRFTISKTSTTVDLKITSPTTEDTATYFCARDGYDDYGDFDRLDL SEQ ID NO: 685 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCACATTTGC AGCCGTGCTGACCCAGACACCATCGCCCGTGTCTGTACCTGTGGGAGGCACAGTCACCATCAAGTGCC AGTCCAGTCAGAGTGTTTATAATAATTTCTTATCGTGGTATCAGCAGAAACCAGGGCAGCCTCCCAAG CTCCTGATCTACCAGGCATCCAAACTGGCATCTGGGGTCCCAGATAGGTTCAGCGGCAGTGGATCTGG GACACAGTTCACTCTCACCATCAGCGGCGTGCAGTGTGACGATGCTGCCACTTACTACTGTCTAGGCG GTTATGATGATGATGCTGATAATGCT SEQ ID NO: 686 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGGTGGA GGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACGCTCACCTGCACAGTCTCTGGAATCG ACCTCAGTGACTATGCAATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAATGGATCGGAAT CATTTATGCTGGTAGTGGTAGCAATGGTACGCGAGCTGGGCGAAAGGCCGATTCACCATCTCCAAAA CCTCGACCACGGTGGATCTGAAAATCACCAGTCCCACAACCGAGGACACGGCCACCTATTTCTGTGCC AGAGATGGATACGATGACTATGGTGATTTCGATCGATTGGATCTC SEQ ID NO: 687 MDTRAPTQLLGLLLLWLPGARCAYDMTQTPASVSAAVGGTVTIKCQASQSINNELSWYQQKSGQRPKLLI YRASTLASGVSSRFKGSGSGTEFTLTISDLECADAATYYCQQGYSLRNIDNA SEQ ID NO: 688 METGLRWLLLVAVISGVQCQSLEESGGRLVTPGTPLTLTCTASGFSLSNYYMTWVROAPGKGLEWIGMIY GSDETAYANWAIGRFTISKTSTTVDLKMTSLTAADTATYFCARDDSSDWDAKFNL SEQ ID NO: 689 ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCAGATGTGC CTATGATATGACCCAGACTCCAGCCTCGGTGTCTGCAGCTGTGGGAGGCACAGTCACCATCAAATGCC AGGCCAGTCAGAGCATTAACAATGAATTATCCTGGTATCAGCAGAAATCAGGGCAGCGTCCCAAGCTC CTGATCTATAGGGCATCCACTCTGGCATCTGGGGTCTCATCGCGGTTCAAAGGCAGTGGATCTGGGAC AGAGTTCACTCTCACCATCAGCGACCTGGAGTGTGCCGATGCTGCCACTTACTACTGTCAACAGGGTT ATAGTCTGAGGAATATTGATAATGCT SEQ ID NO: 690 ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCTCAGGTGTCCAGTGTCAGTCGCTGGAG GAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTGCACAGCCTCTGGATTCTC CCTCAGTAACTACTACATGACCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAATGGATCGGAATG ATTTATGGTAGTGATGAAACAGCCTACGCGAACTGGGCGATAGCCCGATTCACCATCTCCAAAACCTC GACCACGGTGGATCTGAAAATGACCAGTCTGACAGCCGCGGACACGGCCACCTATTTCTGTGCCAGAG ATGATAGTAGTGACTGGGATGCAAAATTTAACTTG SEQ ID NO: 691 EVQLVESGGGLVQPGGSLRLSCAASCFSLSNYYMTWVRQAPGKGLEWVGMIYGSDETAYANWAIGRFTIS RDNSKNTLYLQMNSLRAEDTAVYYCARDDSSDWDAKFNLWGQGTLVTVSSASTKGPSVFPLAPSSKSTSG GTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNT KVDKRVEPKSCDKTHTCPPCPAPELEGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVD GVEVHNAKTKPREEQYASTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT LPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN VFSCSVMHEALHNHYTQKSLSLSPGK SEQ ID NO: 692 EVQLVESGGGLVQPGGSLRLSCAASGFSLSNYYMTWVRQAPGKGLEWVGMIYGSDETAYANSAIGRFTIS RDNSKNTLYLQMNSLRAEDTAVYYCARDDSSDWDAKFNLWGQGTLVTVSSASTKGPSVFPLAPSSKSTSG GTAALGCLVKDYFPEPVTVSWNSGALTSGVHTEPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNT KVDKRVEPK5CDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVD GVEVHNAKTKPREEQYASTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT LPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDICSRWQQGN VFSCSVMHEALHNHYTQKSLSLSPGK SEQ ID NO: 693 DIQMTQSPSTLSASVGDRVTITCQASQSINNELSWYQQKPGKAPKLLIYRASTLASGVPSRFSGSGSGTEFTL TI5SLQPDDFATYYCQQGYSLRNIDNAFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPRE AKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGE C SEQ ID NO: 694 CAGGCCAGTCAGAGCATTAACAATGAGTTATCC SEQ ID NO: 695 CAACAGGGTTATAGTCTGAGGAACATTGATAATGCT SEQ ID NO: 696 ATCATCTATGGTAGTGATGAAACCGCCTACGCTACCTCCGCTATAGGC SEQ ID NO: 697 GATGATAGTAGTGACTGGGATGCAAAGTTCAACTTG SEQ ID NO: 698 GCTATCCAGATGACCCAGTCTCCTTCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGC CAGGCCAGTCAGAGCATTAACAATGAGTTATCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGC TCCTGATCTATAGGGCATCCACTCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGG ACAGACTTCACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAGGGT TATAGTCTGAGGAACATTGATAATGCTTTCGGCGGAGGGACCAAGGTGGAAATCAAACGTACG SEQ ID NO: 699 AIQMTQSPSSLSASVGDRVTITCQASQSINNELSWYQQKPGKAPKLLIYRASTLASGVPSRFSGSGSGTDFTL TISSLQPDDFATYYCQQGYSLRNIDNAFGGGTKVEIKRT SEQ ID NO: 700 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGC AGCCTCTGGATTCTCCCTCAGTAACTACTACGTGACCTGGGTCCGTCAGGCTCCAGGGAAGGGGCTGG AGTGGGTCGGCATCATCTATGGTAGTGATGAAACCGCCTACGCTACCTCCGCTATAGGCCGATTCACC ATCTCCAGAGACAATTCCAAGAACACCCTGTATCTTCAAATGAACAGCCTGAGAGCTGAGGACACTGC TGTGTATTACTGTGCTAGAGATGATAGTAGTGACTGGGATGCAAAGTTCAACTTGTGGGGCCAAGGGA CCCTCGTCACCGTCTCGAGC SEQ ID NO: 701 GCTATCCAGATGACCCAGTCTCCTTCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGC CAGGCCAGTCAGAGCATTAACAATGAGTTATCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGC TCCTGATCTATAGGGCATCCACTCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGG ACAGACTTCACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAGGGT TATAGTCTGAGGAACATTGATAATGCTTTCGGCGGAGGGACCAAGGTGGAAATCAAACGTACGGTGG CTGCACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGT GCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCG GGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCC TGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCT GAGTCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGT

SEQ ID NO: 702 AIQMTQSPSSLSASVGDRVTITCQASQSINNELSWYQQKPGKAPKLLIYRASTLASGVPSRPSGSGSGTDFTL TISSLQPDDFATYYCQQGYSLRNIDNAFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPRE AKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGE C SEQ ID NO: 703 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGC AGCCTCTGGATTCTCCCTCAGTAACTACTACGTGACCTGGGTCCGTCAGGCTCCAGGGAAGGGGCTGG AGTGGGTCGGCATCATCTATGGTAGTGATGAAACCGCCTACGCTACCTCCGCTATAGGCGATTCACC ATCTCCAGAGACAATTCCAAGAACACCCTGTATCTTCAAATGAACAGCCTGAGAGCTGAGGACACTGC TGTGTATTACTGTGCTAGAGATGATAGTAGTGACTGGGATGCAAAGTTCAACTTGTGGGGCCAAGGGA CCCTCGTCACCGTCTCGAGCGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGA GCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTG TCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACT CTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACG TGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCA CACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACC CAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAG ACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCG GGAGGAGCAGTACGCCAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGA ATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCC AAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCATCCCGGGAGGAGATGACCA AGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAG AGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTT CCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGA TGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA SEQ ID NO: 704 EVQLVESGGGLVQPGGSLRLSCAASGFSLSNYYVTWYRQAPGKGLEWVGIIYGSDETAYATSAIGRFTISR DNSKNTLYLQMNSLRAEDTAVYYCARDDSSDWDAKFNLWOQGTLVTVSSASTKGPSVFPLAPSSKSTSGG TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTK VDKRVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDG VEVHNAKTKPREEQYASTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN VFSCSVMHEALHNHYTQKSLSLSPGK SEQ ID NO: 705 ATGAAGTGGGTAACCTTTATTTCCCTTCTGTTTCTCTTTAGCAGCGCTTATTCCGCTATCCAGATGACCC AGTCTCCTTCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCCAGTCAGAGCA TTAACAATGAGTTATCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAGGGCA TCCACTCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGACTTCACTCTCAC CATCAGCAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAGGGTTATAGTCTGAGGAACA TTGATAATGCTTTCGGCGGAGGGACCAAGGTGGAAATCAAACGTACGGTGGCTGCACCATCTGTCTTC ATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTC TATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTAACTCCCAGGAGA GTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGC AGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTCGCCCGTCACA AAGAGCTTCAACAGGGGAGAGTGT SEQ ID NO: 706 MKWVTFISLLFLFSSAYSAIQMTQSPSSLSASVGDRVTITCQASQSINNELSWYQQKPGKAPKLLIYRASTLA SGVPSRFSGSGSGTDFTLTISSLQPDDFATYYCQQGYSLRNIDNAFGGGTKVEIKRTVAAPSVFIFPPSDEQL KSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACE VTHQGLSSPVTKSFNRGEC SEQ ID NO: 707 ATGAAGTGGGTAACCTTTATTTCCCTTCTGTTTCTCTTTAGCAGCGCTTATTCCGAGGTGCAGCTGGTG GAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCTC CCTCAGTAACTACTACGTGACCTGGGTCCGTCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCGGCATCA TCTATGGTAGTGATGAAACCGCCTACGCTACCTCCGCTATAGGCCGATTCACCATCTCCAGAGACAATT CCAAGAACACCCTGTATCTTCAAATGAACAGCCTGAGAGCTGAGGACACTGCTGTGTATTACTGTGCT AGAGATGATAGTAGTGACTGGGATGCAAAGTTCAACTTGTGGGGCCAAGGGACCCTCGTCACCGTCTC GAGCGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCA CAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGC GCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGC GTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAG CAACACCAAGGTGGACAAGAGAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGC CCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCAT GATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGT TCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACGC CAGCACGTACCGTGTGGTCACGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACA AGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCA GCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGC CTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCC GGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGC TCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTG CACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAA SEQ ID NO: 708 MKWVTFISLLFLFSSAYSEVQLVESGGGLVQPGGSLRLSCAASGFSLSNYYVTWVRQAPGKGLEWVGIIYG SDETAYATSAIGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDDSSDWDAKFNLWGQGTLVTVSSAST KGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSS LGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVV DVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYASTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIE KTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF LYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK SEQ ID NO: 709 AIQMTQSPSSLSASVGDRVTITCQASQSINNELSWYQQKPGKAPKLLIYRASTLASGVPSRFSGSGSGTDFTL TISSLQPDDFATYYCQQGYSLRNIDNAFGGGTKVEIKR SEQ ID NO: 710 RASQGIRNDLG SEQ ID NO: 711 RASQGISNYLA SEQ ID NO: 712 RASQSISSWLA SEQ ID NO: 713 AASSLQS SEQ ID NO: 714 AASTLQS SEQ ID NO: 715 KASSLES SEQ ID NO: 716 SNYMS SEQ ID NO: 717 VIYSGGSTYYADSVKG SEQ ID NO: 718 VIYSGGSSTYYADSVKG SEQ ID NO: 719 ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLS5VVTVP SSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCV VVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYASTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA PIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDG SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK SEQ ID NO: 720 ATCCAGATGACCCAGTCTCCTTCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCAG GCCAGTCAGAGCATTAACAATGAGTTATCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT GATCTATAGGGCATCCACTCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAG ACTTCACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAGGGTTATA GTCTGAGGAACATTGATAATGCT SEQ ID NO: 721 GCCTATGATATGACCCAGACTCCAGCCTCGGTGTCTGCAGCTGTGGGAGGCACAGTCACCATCAAGTG CCAGGCCAGTCAGAGCATTAACAATGAATTATCCTGGTATCAGCAGAAACCAGGGCAGCGTCCCAAG CTCCTGATCTATAGGGCATCCACTCTGGCATCTGGGGTCTCATCGCGGTTCAAAGGCAGTGGATCTGG GACAGAGTTCACTCTCACCATCAGCGACCTGGAGTGTGCCGATGCTGCCACTTACTACTGTCAACAGG GTTATAGTCTGAGGAATATTGATAATGCTTTCGGCGGAGGGACCGAGGTGGTGGTCAAACGT SEQ ID NO: 722 ATCCAGATGACCCAGTCTCCTTCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCAG GCCAGTCAGAGCATTAACAATGAGTTATCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCT GATCTATAGGGCATCCACTCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAG ACTTCAZCTCTCACCATCAGCAGCCTGCAGCTGATGATTTTGCAACTTATTACTGCCAACAGGGTTATA GTCTGAGGAACATTGATAATGCTTTACGGCGGAGGGACCAAGGTGGAAATCAAACGTACGGTGGCTGC ACCATCTGTCTTCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTGTGCCT GCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCGGGTA ACTCCCAGGAGAGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCTGAC GCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGC TCGCCCGTCACAAAGAGCTTCAACAGGGGAGAGTGT SEQ ID NO: 723 GCTATCCAGATGACCCAGTCTCCTTCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGC CAGGCCAGTCAGAGFATTAACAATGAGTTATCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGC TCCTGATCTATAGGGCAaTCCACTCTGGCATCTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGG ACAGACTTCACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAGGGT TATAGTCTGAGGAACATTGATAATGCTTTCGGCGGAGGGACCAAGGTGGAAATCAAACGT SEQ ID NO: 724 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGC AGCCTCTGGATTCTCCCTCAGTAACTACTACGTGACCTGGGTCCGTCAGGCTCCAGGGAAGGGGCTGG AGTGGGTCGGCATCATCTATGGTAGTGATGAAACCGCCTACGCTACCTCCGCTATAGGCCGATTCACC ATCTTCCAGAGACAATTCCAAGAACACCCTGTATCTTCAAATGAACAGCCTGAGAGCTGAGGACACTGC TGTGTATTACTGTGCTAGAGATGATAGTAGTGACTGGGATGCAAAGTTCAACTTG SEQ ID NO: 725 CAGTCGCTGGAGGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTGCACAGC CTCTGGATTCTCCCTCAGTAACTACTACGTGACCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAAT GGATCGGAATCATTTATGGTAGTGATGAAACGGCCTACGCGACCTGGGCGATAGGCCGATTCACCATC TCCAAAACCTCGACCACGGTGGATCTGAAAATGACCAGTCTGACAGCCGCGGACACGGCCACCTATTT CTGTGCCAGAGATGATAGTAGTGACTGGGATGCAAAATTTAACTTGTGGGGCCAAGGCACCCTGGTCA CCGTCTCGAGC SEQ ID NO: 726 MEKLLCFLVLTSLSHAFGQTDMSRKAFVFPKESDTSYVSLKAPLTKPLKAFTVCLHFYTELSSTRGYSIFSY ATKRQDNEILIFWSKDIGYSFTVGGSEILFEVPEVTVAPVHICTSWESASGIVEFWVDGKPRVRKSLKKGYT VGAEASIILGQEQDSFGGNFEGSQSLVGDIGNVNMWDFVLSPDEINTIYLGGPFSPNVLNWRALKYEVQGE VFTKPQLWP SEQ ID NO: 727 MLAVGCALLAALLAAPGAALAPRRCPAQEVARGVLTSLPGDSVTLTCPGVEPEDNATVHWVLRKPAAGS HPSRWAGMGRRLLLRSVQLHDSGNYSCYRAGRPAGTVHLLVDVPPEEPQLSCFRKSPLSNVVCEWGPRST PSLTTKAVLLVRKFQNSPAEDFQFPCQYSQESQKFSCQLAVPEGDSSFYIVSMCVASSVGSKFSKTQTFQGC GILQPDPPANITVTAVARNPRWLSVTWQDPHSWNSSFYRLRFELRYRAERSKTFTTWMVKDLQHHCVIHD AWSGLRHVVQLRAQEEFGQGEWSEWSPEAMGTPWTESRSPPAENEVSTPMQALTTNKDDDNILFRDSAN ATSLPVQDSSSVPLPTELVAGGSLAFGTLLCIAIVLRFKKTWKLRALKEGKTSMHPPYSLGQLVPERPRPTPV LVPLISPPVSPSSLGSDNTSSHNRPDARDPRSPYDISNTDYFFPR SEQ ID NO: 728 MLTLQTWVVQALFIFLTTESTGELLDPCGYISPESPVVQLHSNFTAVCVLKEKCMDYFHVNANYIVWKTNHFTI- PKE QYTIINRTASSVTFTDIASLNIQLTCNILTFGQLEQNVYGITIISGLPPEKPKNLSCIVNEGKKMRCEWDGGRE- THL ETNFTLKSEWATHKFADCKAKRDTPTSCTVDYSTVYFVNIEVWVEAENALGKVTSDHINFDPVYKVKPNPPHNL- SVI NSEELSSILKLTWTNPSIKSVIILKYNIQYRTHDASTWSQIPPEDTASTRSSFTVQDLKPFTEYVFRIRCMKED- GKG YWSDWSEEASGITYEDRPSKAPSFWYKIDPSHTQGYRTVQLVWKTLPPFEANGKILDYEVTLTRWKSHLQNYTV- NAT KLTVNLTNDRYLATLTVRNLVGKSDAAVLTIPACDFQATHPVMDLKAFPKDNMLWVEWTTPRESVKKYILEWCV- LSD KAPCITDWQQEDGTVHRTYLRGNLAESKCYLITVTPVYADSPGSPESIKAYLKQAPPSKGPTVRTKKVGKNEAV- LEW DQLPVDVQNGFIRNYTIFYRTIIGNETAVNVDSSHTEYTLSSLTSDTLYMVRMAAYTDEGGKDGPEFTFTTPKF- AQG EIEAIVVPVCLAFLLTTLLGVLFCFNKRDLIKKHIWPNVPDPSKSHIAQWSPHTPPRHNFNSKDQMYSDGNFTD- VSV VEIEANDKKPFPEDLKSLDLFKKEKINTEGHSSGIGGSSCMSSSRPSTSSSDENESSQNTSSTVQYSTVVHSGY- RHQ VPSVQVFSRSESTQPLLDSEERPEDLQLVDHVDGGDGILPRQQYFKQNCSQHESSPDISHFERSKQVSSVNEED- FVR LKQQISDHISQSCGSGQMKMFQEVSAADAFGPGTEGQVERFETVGMEAATDEGMPKSYLPQTVRQGGYMPQ

SEQUENCE LISTINGS

1

7281183PRTHomo sapiens 1Val Pro Pro Gly Glu Asp Ser Lys Asp Val Ala Ala Pro His Arg Gln1 5 10 15Pro Leu Thr Ser Ser Glu Arg Ile Asp Lys Gln Ile Arg Tyr Ile Leu 20 25 30Asp Gly Ile Ser Ala Leu Arg Lys Glu Thr Cys Asn Lys Ser Asn Met 35 40 45Cys Glu Ser Ser Lys Glu Ala Leu Ala Glu Asn Asn Leu Asn Leu Pro 50 55 60Lys Met Ala Glu Lys Asp Gly Cys Phe Gln Ser Gly Phe Asn Glu Glu65 70 75 80Thr Cys Leu Val Lys Ile Ile Thr Gly Leu Leu Glu Phe Glu Val Tyr 85 90 95Leu Glu Tyr Leu Gln Asn Arg Phe Glu Ser Ser Glu Glu Gln Ala Arg 100 105 110Ala Val Gln Met Ser Thr Lys Val Leu Ile Gln Phe Leu Gln Lys Lys 115 120 125Ala Lys Asn Leu Asp Ala Ile Thr Thr Pro Asp Pro Thr Thr Asn Ala 130 135 140Ser Leu Leu Thr Lys Leu Gln Ala Gln Asn Gln Trp Leu Gln Asp Met145 150 155 160Thr Thr His Leu Ile Leu Arg Ser Phe Lys Glu Phe Leu Gln Ser Ser 165 170 175Leu Arg Ala Leu Arg Gln Met 1802163PRTOryctolagus cuniculus 2Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Arg Cys Ala Tyr Asp Met Thr Gln Thr Pro Ala Ser 20 25 30Val Ser Ala Ala Val Gly Gly Thr Val Thr Ile Lys Cys Gln Ala Ser 35 40 45Gln Ser Ile Asn Asn Glu Leu Ser Trp Tyr Gln Gln Lys Pro Gly Gln 50 55 60Arg Pro Lys Leu Leu Ile Tyr Arg Ala Ser Thr Leu Ala Ser Gly Val65 70 75 80Ser Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr 85 90 95Ile Ser Asp Leu Glu Cys Ala Asp Ala Ala Thr Tyr Tyr Cys Gln Gln 100 105 110Gly Tyr Ser Leu Arg Asn Ile Asp Asn Ala Phe Gly Gly Gly Thr Glu 115 120 125Val Val Val Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro 130 135 140Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu145 150 155 160Leu Asn Asn3166PRTOryctolagus cuniculus 3Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Leu Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Leu Ser 35 40 45Asn Tyr Tyr Val Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 50 55 60Trp Ile Gly Ile Ile Tyr Gly Ser Asp Glu Thr Ala Tyr Ala Thr Trp65 70 75 80Ala Ile Gly Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu 85 90 95Lys Met Thr Ser Leu Thr Ala Ala Asp Thr Ala Thr Tyr Phe Cys Ala 100 105 110Arg Asp Asp Ser Ser Asp Trp Asp Ala Lys Phe Asn Leu Trp Gly Gln 115 120 125Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 130 135 140Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala145 150 155 160Leu Gly Cys Leu Val Lys 165411PRTOryctolagus cuniculus 4Gln Ala Ser Gln Ser Ile Asn Asn Glu Leu Ser1 5 1057PRTOryctolagus cuniculus 5Arg Ala Ser Thr Leu Ala Ser1 5612PRTOryctolagus cuniculus 6Gln Gln Gly Tyr Ser Leu Arg Asn Ile Asp Asn Ala1 5 1075PRTOryctolagus cuniculus 7Asn Tyr Tyr Val Thr1 5816PRTOryctolagus cuniculus 8Ile Ile Tyr Gly Ser Asp Glu Thr Ala Tyr Ala Thr Trp Ala Ile Gly1 5 10 15912PRTOryctolagus cuniculus 9Asp Asp Ser Ser Asp Trp Asp Ala Lys Phe Asn Leu1 5 1010491DNAOryctolagus cuniculus 10atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60agatgtgcct atgatatgac ccagactcca gcctcggtgt ctgcagctgt gggaggcaca 120gtcaccatca agtgccaggc cagtcagagc attaacaatg aattatcctg gtatcagcag 180aaaccagggc agcgtcccaa gctcctgatc tatagggcat ccactctggc atctggggtc 240tcatcgcggt tcaaaggcag tggatctggg acagagttca ctctcaccat cagcgacctg 300gagtgtgccg atgctgccac ttactactgt caacagggtt atagtctgag gaatattgat 360aatgctttcg gcggagggac cgaggtggtg gtcaaacgta cggtagcggc cccatctgtc 420ttcatcttcc cgccatctga tgagcagttg aaatctggaa ctgcctctgt tgtgtgcctg 480ctgaataact t 49111499DNAOryctolagus cuniculus 11atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60tcgctggagg agtccggggg tcgcctggtc acgcctggga cacccctgac actcacctgc 120acagcctctg gattctccct cagtaactac tacgtgacct gggtccgcca ggctccaggg 180aaggggctgg aatggatcgg aatcatttat ggtagtgatg aaacggccta cgcgacctgg 240gcgataggcc gattcaccat ctccaaaacc tcgaccacgg tggatctgaa aatgaccagt 300ctgacagccg cggacacggc cacctatttc tgtgccagag atgatagtag tgactgggat 360gcaaaattta acttgtgggg ccaaggcacc ctggtcaccg tctcgagcgc ctccaccaag 420ggcccatcgg tcttccccct ggcaccctcc tccaagagca cctctggggg cacagcggcc 480ctgggctgcc tggtcaagg 4991233DNAOryctolagus cuniculus 12caggccagtc agagcattaa caatgaatta tcc 331321DNAOryctolagus cuniculus 13agggcatcca ctctggcatc t 211436DNAOryctolagus cuniculus 14caacagggtt atagtctgag gaatattgat aatgct 361515DNAOryctolagus cuniculus 15aactactacg tgacc 151648DNAOryctolagus cuniculus 16atcatttatg gtagtgatga aacggcctac gcgacctggg cgataggc 481736DNAOryctolagus cuniculus 17gatgatagta gtgactggga tgcaaaattt aacttg 3618109PRTOryctolagus cuniculus 18Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Leu Ser Asn Tyr 20 25 30Tyr Val Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Ile Ile Tyr Gly Ser Asp Glu Thr Ala Tyr Ala Thr Trp Ala Ile 50 55 60Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu65 70 75 80Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95Arg Asp Asp Ser Ser Asp Trp Asp Ala Lys Phe Asn Leu 100 10519109PRTOryctolagus cuniculus 19Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Leu Ser Asn Tyr 20 25 30Tyr Val Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Ile Ile Tyr Gly Ser Asp Glu Thr Ala Tyr Ala Thr Ser Ala Ile 50 55 60Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu65 70 75 80Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95Arg Asp Asp Ser Ser Asp Trp Asp Ala Lys Phe Asn Leu 100 1052099PRTOryctolagus cuniculus 20Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp1 5 10 15Arg Val Thr Ile Thr Cys Gln Ala Ser Gln Ser Ile Asn Asn Glu Leu 20 25 30Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr 35 40 45Arg Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly Ser 50 55 60Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Asp65 70 75 80Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Gly Tyr Ser Leu Arg Asn Ile 85 90 95Asp Asn Ala21170PRTOryctolagus cuniculus 21Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Arg Cys Ala Tyr Asp Met Thr Gln Thr Pro Ala Ser 20 25 30Val Glu Val Ala Val Gly Gly Thr Val Thr Ile Asn Cys Gln Ala Ser 35 40 45Glu Thr Ile Tyr Ser Trp Leu Ser Trp Tyr Gln Gln Lys Pro Gly Gln 50 55 60Pro Pro Lys Leu Leu Ile Tyr Gln Ala Ser Asp Leu Ala Ser Gly Val65 70 75 80Pro Ser Arg Phe Ser Gly Ser Gly Ala Gly Thr Glu Tyr Thr Leu Thr 85 90 95Ile Ser Gly Val Gln Cys Asp Asp Ala Ala Thr Tyr Tyr Cys Gln Gln 100 105 110Gly Tyr Ser Gly Ser Asn Val Asp Asn Val Phe Gly Gly Gly Thr Glu 115 120 125Val Val Val Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro 130 135 140Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu145 150 155 160Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys 165 17022167PRTOryctolagus cuniculus 22Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Glu Gln Leu Lys Glu Ser Gly Gly Arg Leu Val Thr 20 25 30Pro Gly Thr Pro Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Leu 35 40 45Asn Asp His Ala Met Gly Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 50 55 60Glu Tyr Ile Gly Phe Ile Asn Ser Gly Gly Ser Ala Arg Tyr Ala Ser65 70 75 80Trp Ala Glu Gly Arg Phe Thr Ile Ser Arg Thr Ser Thr Thr Val Asp 85 90 95Leu Lys Met Thr Ser Leu Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys 100 105 110Val Arg Gly Gly Ala Val Trp Ser Ile His Ser Phe Asp Pro Trp Gly 115 120 125Pro Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser 130 135 140Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala145 150 155 160Ala Leu Gly Cys Leu Val Lys 1652311PRTOryctolagus cuniculus 23Gln Ala Ser Glu Thr Ile Tyr Ser Trp Leu Ser1 5 10247PRTOryctolagus cuniculus 24Gln Ala Ser Asp Leu Ala Ser1 52512PRTOryctolagus cuniculus 25Gln Gln Gly Tyr Ser Gly Ser Asn Val Asp Asn Val1 5 10265PRTOryctolagus cuniculus 26Asp His Ala Met Gly1 52716PRTOryctolagus cuniculus 27Phe Ile Asn Ser Gly Gly Ser Ala Arg Tyr Ala Ser Trp Ala Glu Gly1 5 10 152812PRTOryctolagus cuniculus 28Gly Gly Ala Val Trp Ser Ile His Ser Phe Asp Pro1 5 1029511DNAOryctolagus cuniculus 29atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60agatgtgcct atgatatgac ccagactcca gcctctgtgg aggtagctgt gggaggcaca 120gtcaccatca attgccaggc cagtgagacc atttacagtt ggttatcctg gtatcagcag 180aagccagggc agcctcccaa gctcctgatc taccaggcat ccgatctggc atctggggtc 240ccatcgcgat tcagcggcag tggggctggg acagagtaca ctctcaccat cagcggcgtg 300cagtgtgacg atgctgccac ttactactgt caacagggtt atagtggtag taatgttgat 360aatgttttcg gcggagggac cgaggtggtg gtcaaacgta cggtagcggc cccatctgtc 420ttcatcttcc cgccatctga tgagcagttg aaatctggaa ctgcctctgt tgtgtgcctg 480ctgaataact tctatcccag agaggccaaa g 51130501DNAOryctolagus cuniculus 30atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60gagcagctga aggagtccgg gggtcgcctg gtcacgcctg ggacacccct gacacttacc 120tgcacagcct ctggattctc cctcaatgac catgcaatgg gctgggtccg ccaggctcca 180gggaaggggc tggaatacat cggattcatt aatagtggtg gtagcgcacg ctacgcgagc 240tgggcagaag gccgattcac catctccaga acctcgacca cggtggatct gaaaatgacc 300agtctgacaa ccgaggacac ggccacctat ttctgtgtca gagggggtgc tgtttggagt 360attcatagtt ttgatccctg gggcccaggg accctggtca ccgtctcgag cgcctccacc 420aagggcccat cggtcttccc cctggcaccc tcctccaaga gcacctctgg gggcacagcg 480gccctgggct gcctggtcaa g 5013133DNAOryctolagus cuniculus 31caggccagtg agaccattta cagttggtta tcc 333221DNAOryctolagus cuniculus 32caggcatccg atctggcatc t 213336DNAOryctolagus cuniculus 33caacagggtt atagtggtag taatgttgat aatgtt 363415DNAOryctolagus cuniculus 34gaccatgcaa tgggc 153548DNAOryctolagus cuniculus 35ttcattaata gtggtggtag cgcacgctac gcgagctggg cagaaggc 483636DNAOryctolagus cuniculus 36gggggtgctg tttggagtat tcatagtttt gatccc 3637165PRTOryctolagus cuniculus 37Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Thr Phe Ala Ala Val Leu Thr Gln Thr Pro Ser Pro 20 25 30Val Ser Ala Ala Val Gly Gly Thr Val Ser Ile Ser Cys Gln Ala Ser 35 40 45Gln Ser Val Tyr Asp Asn Asn Tyr Leu Ser Trp Phe Gln Gln Lys Pro 50 55 60Gly Gln Pro Pro Lys Leu Leu Ile Tyr Gly Ala Ser Thr Leu Ala Ser65 70 75 80Gly Val Pro Ser Arg Phe Val Gly Ser Gly Ser Gly Thr Gln Phe Thr 85 90 95Leu Thr Ile Thr Asp Val Gln Cys Asp Asp Ala Ala Thr Tyr Tyr Cys 100 105 110Ala Gly Val Tyr Asp Asp Asp Ser Asp Asn Ala Phe Gly Gly Gly Thr 115 120 125Glu Val Val Val Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe 130 135 140Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys145 150 155 160Leu Leu Asn Asn Phe 16538166PRTOryctolagus cuniculus 38Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Leu Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Leu Ser 35 40 45Val Tyr Tyr Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 50 55 60Trp Ile Gly Phe Ile Thr Met Ser Asp Asn Ile Asn Tyr Ala Ser Trp65 70 75 80Ala Lys Gly Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu 85 90 95Lys Met Thr Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala 100 105 110Arg Ser Arg Gly Trp Gly Thr Met Gly Arg Leu Asp Leu Trp Gly Pro 115 120 125Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 130 135 140Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala145 150 155 160Leu Gly Cys Leu Val Lys 1653913PRTOryctolagus cuniculus 39Gln Ala Ser Gln Ser Val Tyr Asp Asn Asn Tyr Leu Ser1 5 10407PRTOryctolagus cuniculus 40Gly Ala Ser Thr Leu Ala Ser1 54111PRTOryctolagus cuniculus 41Ala Gly Val Tyr Asp Asp Asp Ser Asp Asn Ala1 5 10425PRTOryctolagus cuniculus 42Val Tyr Tyr Met Asn1 54316PRTOryctolagus cuniculus 43Phe Ile Thr Met Ser Asp Asn Ile Asn Tyr Ala Ser Trp Ala Lys Gly1 5 10 154412PRTOryctolagus cuniculus 44Ser Arg Gly Trp Gly Thr Met Gly Arg Leu Asp Leu1 5 1045496DNAOryctolagus cuniculus 45atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60acatttgccg ccgtgctgac ccagactcca tctcccgtgt ctgcagctgt gggaggcaca 120gtcagcatca gttgccaggc cagtcagagt gtttatgaca acaactactt atcctggttt 180cagcagaaac cagggcagcc tcccaagctc ctgatctatg gtgcatccac tctggcatct 240ggggtcccat cgcggttcgt gggcagtgga tctgggacac agttcactct caccatcaca 300gacgtgcagt gtgacgatgc tgccacttac tattgtgcag gcgtttatga tgatgatagt 360gataatgcct tcggcggagg gaccgaggtg gtggtcaaac gtacggtagc ggccccatct 420gtcttcatct tcccgccatc tgatgagcag ttgaaatctg gaactgcctc tgttgtgtgc 480ctgctgaata acttct 49646499DNAOryctolagus cuniculus 46atggagactg ggctgcgctg gcttctcctg gtggctgtgc tcaaaggtgt ccagtgtcag 60tcgctggagg agtccggggg tcgcctggtc acccctggga cacccctgac actcacctgc 120acagcctctg gattctccct cagtgtctac tacatgaact gggtccgcca ggctccaggg 180aaggggctgg aatggatcgg attcattaca atgagtgata atataaatta

cgcgagctgg 240gcgaaaggcc gattcaccat ctccaaaacc tcgaccacgg tggatctgaa aatgaccagt 300ccgacaaccg aggacacggc cacctatttc tgtgccagga gtcgtggctg gggtacaatg 360ggtcggttgg atctctgggg cccaggcacc ctcgtcaccg tctcgagcgc ctccaccaag 420ggcccatcgg tcttccccct ggcaccctcc tccaagagca cctctggggg cacagcggcc 480ctgggctgcc tggtcaagg 4994739DNAOryctolagus cuniculus 47caggccagtc agagtgttta tgacaacaac tacttatcc 394821DNAOryctolagus cuniculus 48ggtgcatcca ctctggcatc t 214933DNAOryctolagus cuniculus 49gcaggcgttt atgatgatga tagtgataat gcc 335015DNAOryctolagus cuniculus 50gtctactaca tgaac 155148DNAOryctolagus cuniculus 51ttcattacaa tgagtgataa tataaattac gcgagctggg cgaaaggc 485236DNAOryctolagus cuniculus 52agtcgtggct ggggtacaat gggtcggttg gatctc 3653164PRTOryctolagus cuniculus 53Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Ile Cys Asp Pro Val Leu Thr Gln Thr Pro Ser Pro 20 25 30Val Ser Ala Pro Val Gly Gly Thr Val Ser Ile Ser Cys Gln Ala Ser 35 40 45Gln Ser Val Tyr Glu Asn Asn Tyr Leu Ser Trp Phe Gln Gln Lys Pro 50 55 60Gly Gln Pro Pro Lys Leu Leu Ile Tyr Gly Ala Ser Thr Leu Asp Ser65 70 75 80Gly Val Pro Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Gln Phe Thr 85 90 95Leu Thr Ile Thr Asp Val Gln Cys Asp Asp Ala Ala Thr Tyr Tyr Cys 100 105 110Ala Gly Val Tyr Asp Asp Asp Ser Asp Asp Ala Phe Gly Gly Gly Thr 115 120 125Glu Val Val Val Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe 130 135 140Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys145 150 155 160Leu Leu Asn Asn54167PRTOryctolagus cuniculus 54Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Glu Gln Leu Lys Glu Ser Gly Gly Gly Leu Val Thr 20 25 30Pro Gly Gly Thr Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Leu 35 40 45Asn Ala Tyr Tyr Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 50 55 60Glu Trp Ile Gly Phe Ile Thr Leu Asn Asn Asn Val Ala Tyr Ala Asn65 70 75 80Trp Ala Lys Gly Arg Phe Thr Phe Ser Lys Thr Ser Thr Thr Val Asp 85 90 95Leu Lys Met Thr Ser Pro Thr Pro Glu Asp Thr Ala Thr Tyr Phe Cys 100 105 110Ala Arg Ser Arg Gly Trp Gly Ala Met Gly Arg Leu Asp Leu Trp Gly 115 120 125His Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser 130 135 140Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala145 150 155 160Ala Leu Gly Cys Leu Val Lys 1655513PRTOryctolagus cuniculus 55Gln Ala Ser Gln Ser Val Tyr Glu Asn Asn Tyr Leu Ser1 5 10567PRTOryctolagus cuniculus 56Gly Ala Ser Thr Leu Asp Ser1 55711PRTOryctolagus cuniculus 57Ala Gly Val Tyr Asp Asp Asp Ser Asp Asp Ala1 5 10585PRTOryctolagus cuniculus 58Ala Tyr Tyr Met Asn1 55916PRTOryctolagus cuniculus 59Phe Ile Thr Leu Asn Asn Asn Val Ala Tyr Ala Asn Trp Ala Lys Gly1 5 10 156012PRTOryctolagus cuniculus 60Ser Arg Gly Trp Gly Ala Met Gly Arg Leu Asp Leu1 5 1061494DNAOryctolagus cuniculus 61atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60atatgtgacc ctgtgctgac ccagactcca tctcccgtat ctgcacctgt gggaggcaca 120gtcagcatca gttgccaggc cagtcagagt gtttatgaga acaactattt atcctggttt 180cagcagaaac cagggcagcc tcccaagctc ctgatctatg gtgcatccac tctggattct 240ggggtcccat cgcggttcaa aggcagtgga tctgggacac agttcactct caccattaca 300gacgtgcagt gtgacgatgc tgccacttac tattgtgcag gcgtttatga tgatgatagt 360gatgatgcct tcggcggagg gaccgaggtg gtggtcaaac gtacggtagc ggccccatct 420gtcttcatct tcccgccatc tgatgagcag ttgaaatctg gaactgcctc tgttgtgtgc 480ctgctgaata actt 49462502DNAOryctolagus cuniculus 62atggagactg ggctgcgctg gcttctcctg gtggctgtgc tcaaaggtgt ccagtgtcag 60gagcagctga aggagtccgg aggaggcctg gtaacgcctg gaggaaccct gacactcacc 120tgcacagcct ctggattctc cctcaatgcc tactacatga actgggtccg ccaggctcca 180gggaaggggc tggaatggat cggattcatt actctgaata ataatgtagc ttacgcgaac 240tgggcgaaag gccgattcac cttctccaaa acctcgacca cggtggatct gaaaatgacc 300agtccgacac ccgaggacac ggccacctat ttctgtgcca ggagtcgtgg ctggggtgca 360atgggtcggt tggatctctg gggccatggc accctggtca ccgtctcgag cgcctccacc 420aagggcccat cggtcttccc cctggcaccc tcctccaaga gcacctctgg gggcacagcg 480gccctgggct gcctggtcaa gg 5026339DNAOryctolagus cuniculus 63caggccagtc agagtgttta tgagaacaac tatttatcc 396421DNAOryctolagus cuniculus 64ggtgcatcca ctctggattc t 216533DNAOryctolagus cuniculus 65gcaggcgttt atgatgatga tagtgatgat gcc 336615DNAOryctolagus cuniculus 66gcctactaca tgaac 156748DNAOryctolagus cuniculus 67ttcattactc tgaataataa tgtagcttac gcgaactggg cgaaaggc 486836DNAOryctolagus cuniculus 68agtcgtggct ggggtgcaat gggtcggttg gatctc 3669164PRTOryctolagus cuniculus 69Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Thr Phe Ala Gln Val Leu Thr Gln Thr Pro Ser Pro 20 25 30Val Ser Ala Ala Val Gly Gly Thr Val Thr Ile Asn Cys Gln Ala Ser 35 40 45Gln Ser Val Asp Asp Asn Asn Trp Leu Gly Trp Tyr Gln Gln Lys Arg 50 55 60Gly Gln Pro Pro Lys Tyr Leu Ile Tyr Ser Ala Ser Thr Leu Ala Ser65 70 75 80Gly Val Pro Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Gln Phe Thr 85 90 95Leu Thr Ile Ser Asp Leu Glu Cys Asp Asp Ala Ala Thr Tyr Tyr Cys 100 105 110Ala Gly Gly Phe Ser Gly Asn Ile Phe Ala Phe Gly Gly Gly Thr Glu 115 120 125Val Val Val Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro 130 135 140Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu145 150 155 160Leu Asn Asn Phe70164PRTOryctolagus cuniculus 70Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Ser 35 40 45Ser Tyr Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 50 55 60Trp Ile Gly Ile Ile Gly Gly Phe Gly Thr Thr Tyr Tyr Ala Thr Trp65 70 75 80Ala Lys Gly Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu 85 90 95Arg Ile Thr Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala 100 105 110Arg Gly Gly Pro Gly Asn Gly Gly Asp Ile Trp Gly Gln Gly Thr Leu 115 120 125Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu 130 135 140Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys145 150 155 160Leu Val Lys Asp7113PRTOryctolagus cuniculus 71Gln Ala Ser Gln Ser Val Asp Asp Asn Asn Trp Leu Gly1 5 10727PRTOryctolagus cuniculus 72Ser Ala Ser Thr Leu Ala Ser1 57310PRTOryctolagus cuniculus 73Ala Gly Gly Phe Ser Gly Asn Ile Phe Ala1 5 10745PRTOryctolagus cuniculus 74Ser Tyr Ala Met Ser1 57516PRTOryctolagus cuniculus 75Ile Ile Gly Gly Phe Gly Thr Thr Tyr Tyr Ala Thr Trp Ala Lys Gly1 5 10 15769PRTOryctolagus cuniculus 76Gly Gly Pro Gly Asn Gly Gly Asp Ile1 577493DNAOryctolagus cuniculus 77atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60acatttgccc aagtgctgac ccagactcca tcgcctgtgt ctgcagctgt gggaggcaca 120gtcaccatca actgccaggc cagtcagagt gttgatgata acaactggtt aggctggtat 180cagcagaaac gagggcagcc tcccaagtac ctgatctatt ctgcatccac tctggcatct 240ggggtcccat cgcggttcaa aggcagtgga tctgggacac agttcactct caccatcagc 300gacctggagt gtgacgatgc tgccacttac tactgtgcag gcggttttag tggtaatatc 360tttgctttcg gcggagggac cgaggtggtg gtcaaacgta cggtagcggc cccatctgtc 420ttcatcttcc cgccatctga tgagcagttg aaatctggaa ctgcctctgt tgtgtgcctg 480ctgaataact tct 49378493DNAOryctolagus cuniculus 78atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60tcggtggagg agtccggggg tcgcctggtc acgcctggga cacccctgac actcacctgc 120acagtctctg gcttctccct cagtagctat gcaatgagct gggtccgcca ggctccagga 180aaggggctgg agtggatcgg aatcattggt ggttttggta ccacatacta cgcgacctgg 240gcgaaaggcc gattcaccat ctccaaaacc tcgaccacgg tggatctgag aatcaccagt 300ccgacaaccg aggacacggc cacctatttc tgtgccagag gtggtcctgg taatggtggt 360gacatctggg gccaagggac cctggtcacc gtctcgagcg cctccaccaa gggcccatcg 420gtcttccccc tggcaccctc ctccaagagc acctctgggg gcacagcggc cctgggctgc 480ctggtcaagg act 4937939DNAOryctolagus cuniculus 79caggccagtc agagtgttga tgataacaac tggttaggc 398021DNAOryctolagus cuniculus 80tctgcatcca ctctggcatc t 218130DNAOryctolagus cuniculus 81gcaggcggtt ttagtggtaa tatctttgct 308215DNAOryctolagus cuniculus 82agctatgcaa tgagc 158348DNAOryctolagus cuniculus 83atcattggtg gttttggtac cacatactac gcgacctggg cgaaaggc 488427DNAOryctolagus cuniculus 84ggtggtcctg gtaatggtgg tgacatc 2785164PRTOryctolagus cuniculus 85Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Thr Phe Ala Ala Val Leu Thr Gln Thr Pro Ser Pro 20 25 30Val Ser Val Pro Val Gly Gly Thr Val Thr Ile Lys Cys Gln Ser Ser 35 40 45Gln Ser Val Tyr Asn Asn Phe Leu Ser Trp Tyr Gln Gln Lys Pro Gly 50 55 60Gln Pro Pro Lys Leu Leu Ile Tyr Gln Ala Ser Lys Leu Ala Ser Gly65 70 75 80Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Gln Phe Thr Leu 85 90 95Thr Ile Ser Gly Val Gln Cys Asp Asp Ala Ala Thr Tyr Tyr Cys Leu 100 105 110Gly Gly Tyr Asp Asp Asp Ala Asp Asn Ala Phe Gly Gly Gly Thr Glu 115 120 125Val Val Val Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro 130 135 140Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu145 150 155 160Leu Asn Asn Phe86170PRTOryctolagus cuniculus 86Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu Thr Leu Thr Cys Thr Val Ser Gly Ile Asp Leu Ser 35 40 45Asp Tyr Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 50 55 60Trp Ile Gly Ile Ile Tyr Ala Gly Ser Gly Ser Thr Trp Tyr Ala Ser65 70 75 80Trp Ala Lys Gly Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp 85 90 95Leu Lys Ile Thr Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys 100 105 110Ala Arg Asp Gly Tyr Asp Asp Tyr Gly Asp Phe Asp Arg Leu Asp Leu 115 120 125Trp Gly Pro Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly 130 135 140Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly145 150 155 160Thr Ala Ala Leu Gly Cys Leu Val Lys Asp 165 1708712PRTOryctolagus cuniculus 87Gln Ser Ser Gln Ser Val Tyr Asn Asn Phe Leu Ser1 5 10887PRTOryctolagus cuniculus 88Gln Ala Ser Lys Leu Ala Ser1 58911PRTOryctolagus cuniculus 89Leu Gly Gly Tyr Asp Asp Asp Ala Asp Asn Ala1 5 10905PRTOryctolagus cuniculus 90Asp Tyr Ala Met Ser1 59117PRTOryctolagus cuniculus 91Ile Ile Tyr Ala Gly Ser Gly Ser Thr Trp Tyr Ala Ser Trp Ala Lys1 5 10 15Gly9214PRTOryctolagus cuniculus 92Asp Gly Tyr Asp Asp Tyr Gly Asp Phe Asp Arg Leu Asp Leu1 5 1093492DNAOryctolagus cuniculus 93atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60acatttgcag ccgtgctgac ccagacacca tcgcccgtgt ctgtacctgt gggaggcaca 120gtcaccatca agtgccagtc cagtcagagt gtttataata atttcttatc gtggtatcag 180cagaaaccag ggcagcctcc caagctcctg atctaccagg catccaaact ggcatctggg 240gtcccagata ggttcagcgg cagtggatct gggacacagt tcactctcac catcagcggc 300gtgcagtgtg acgatgctgc cacttactac tgtctaggcg gttatgatga tgatgctgat 360aatgctttcg gcggagggac cgaggtggtg gtcaaacgta cggtagcggc cccatctgtc 420ttcatcttcc cgccatctga tgagcagttg aaatctggaa ctgcctctgt tgtgtgcctg 480ctgaataact tc 49294511DNAOryctolagus cuniculus 94atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60tcggtggagg agtccggggg tcgcctggtc acgcctggga cacccctgac gctcacctgc 120acagtctctg gaatcgacct cagtgactat gcaatgagct gggtccgcca ggctccaggg 180aaggggctgg aatggatcgg aatcatttat gctggtagtg gtagcacatg gtacgcgagc 240tgggcgaaag gccgattcac catctccaaa acctcgacca cggtggatct gaaaatcacc 300agtccgacaa ccgaggacac ggccacctat ttctgtgcca gagatggata cgatgactat 360ggtgatttcg atcgattgga tctctggggc ccaggcaccc tcgtcaccgt ctcgagcgcc 420tccaccaagg gcccatcggt cttccccctg gcaccctcct ccaagagcac ctctgggggc 480acagcggccc tgggctgcct ggtcaaggac t 5119536DNAOryctolagus cuniculus 95cagtccagtc agagtgttta taataatttc ttatcg 369621DNAOryctolagus cuniculus 96caggcatcca aactggcatc t 219733DNAOryctolagus cuniculus 97ctaggcggtt atgatgatga tgctgataat gct 339815DNAOryctolagus cuniculus 98gactatgcaa tgagc 159951DNAOryctolagus cuniculus 99atcatttatg ctggtagtgg tagcacatgg tacgcgagct gggcgaaagg c 5110042DNAOryctolagus cuniculus 100gatggatacg atgactatgg tgatttcgat cgattggatc tc 42101164PRTOryctolagus cuniculus 101Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Arg Cys Ala Tyr Asp Met Thr Gln Thr Pro Ala Ser 20 25 30Val Ser Ala Ala Val Gly Gly Thr Val Thr Ile Lys Cys Gln Ala Ser 35 40 45Gln Ser Ile Asn Asn Glu Leu Ser Trp Tyr Gln Gln Lys Ser Gly Gln 50 55 60Arg Pro Lys Leu Leu Ile Tyr Arg Ala Ser Thr Leu Ala Ser Gly Val65 70 75 80Ser Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr 85 90 95Ile Ser Asp Leu Glu Cys Ala Asp Ala Ala Thr Tyr Tyr Cys Gln Gln 100 105 110Gly Tyr Ser Leu Arg Asn Ile Asp Asn Ala Phe Gly Gly Gly Thr Glu 115 120 125Val Val Val Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro 130 135 140Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu145 150 155 160Leu Asn Asn Phe102166PRTOryctolagus cuniculus 102Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Ser Gly1 5 10 15Val Gln Cys Gln Ser Leu Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Leu Ser 35 40 45Asn Tyr Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 50 55 60Trp Ile Gly

Met Ile Tyr Gly Ser Asp Glu Thr Ala Tyr Ala Asn Trp65 70 75 80Ala Ile Gly Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu 85 90 95Lys Met Thr Ser Leu Thr Ala Ala Asp Thr Ala Thr Tyr Phe Cys Ala 100 105 110Arg Asp Asp Ser Ser Asp Trp Asp Ala Lys Phe Asn Leu Trp Gly Gln 115 120 125Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 130 135 140Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala145 150 155 160Leu Gly Cys Leu Val Lys 16510311PRTOryctolagus cuniculus 103Gln Ala Ser Gln Ser Ile Asn Asn Glu Leu Ser1 5 101047PRTOryctolagus cuniculus 104Arg Ala Ser Thr Leu Ala Ser1 510512PRTOryctolagus cuniculus 105Gln Gln Gly Tyr Ser Leu Arg Asn Ile Asp Asn Ala1 5 101065PRTOryctolagus cuniculus 106Asn Tyr Tyr Met Thr1 510716PRTOryctolagus cuniculus 107Met Ile Tyr Gly Ser Asp Glu Thr Ala Tyr Ala Asn Trp Ala Ile Gly1 5 10 1510812PRTOryctolagus cuniculus 108Asp Asp Ser Ser Asp Trp Asp Ala Lys Phe Asn Leu1 5 10109492DNAOryctolagus cuniculus 109atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60agatgtgcct atgatatgac ccagactcca gcctcggtgt ctgcagctgt gggaggcaca 120gtcaccatca aatgccaggc cagtcagagc attaacaatg aattatcctg gtatcagcag 180aaatcagggc agcgtcccaa gctcctgatc tatagggcat ccactctggc atctggggtc 240tcatcgcggt tcaaaggcag tggatctggg acagagttca ctctcaccat cagcgacctg 300gagtgtgccg atgctgccac ttactactgt caacagggtt atagtctgag gaatattgat 360aatgctttcg gcggagggac cgaggtggtg gtcaaacgta cggtagcggc cccatctgtc 420ttcatcttcc cgccatctga tgagcagttg aaatctggaa ctgcctctgt tgtgtgcctg 480ctgaataact tc 492110499DNAOryctolagus cuniculus 110atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tctcaggtgt ccagtgtcag 60tcgctggagg agtccggggg tcgcctggtc acgcctggga cacccctgac actcacctgc 120acagcctctg gattctccct cagtaactac tacatgacct gggtccgcca ggctccaggg 180aaggggctgg aatggatcgg aatgatttat ggtagtgatg aaacagccta cgcgaactgg 240gcgataggcc gattcaccat ctccaaaacc tcgaccacgg tggatctgaa aatgaccagt 300ctgacagccg cggacacggc cacctatttc tgtgccagag atgatagtag tgactgggat 360gcaaaattta acttgtgggg ccaagggacc ctcgtcaccg tctcgagcgc ctccaccaag 420ggcccatcgg tcttccccct ggcaccctcc tccaagagca cctctggggg cacagcggcc 480ctgggctgcc tggtcaagg 49911133DNAOryctolagus cuniculus 111caggccagtc agagcattaa caatgaatta tcc 3311221DNAOryctolagus cuniculus 112agggcatcca ctctggcatc t 2111336DNAOryctolagus cuniculus 113caacagggtt atagtctgag gaatattgat aatgct 3611415DNAOryctolagus cuniculus 114aactactaca tgacc 1511548DNAOryctolagus cuniculus 115atgatttatg gtagtgatga aacagcctac gcgaactggg cgataggc 4811636DNAOryctolagus cuniculus 116gatgatagta gtgactggga tgcaaaattt aacttg 36117109PRTOryctolagus cuniculus 117Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Leu Ser Asn Tyr 20 25 30Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Met Ile Tyr Gly Ser Asp Glu Thr Ala Tyr Ala Asn Trp Ala Ile 50 55 60Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu65 70 75 80Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95Arg Asp Asp Ser Ser Asp Trp Asp Ala Lys Phe Asn Leu 100 105118109PRTOryctolagus cuniculus 118Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Leu Ser Asn Tyr 20 25 30Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Met Ile Tyr Gly Ser Asp Glu Thr Ala Tyr Ala Asn Ser Ala Ile 50 55 60Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu65 70 75 80Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95Arg Asp Asp Ser Ser Asp Trp Asp Ala Lys Phe Asn Leu 100 105119100PRTOryctolagus cuniculus 119Asp Ile Gln Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly1 5 10 15Asp Arg Val Thr Ile Thr Cys Gln Ala Ser Gln Ser Ile Asn Asn Glu 20 25 30Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45Tyr Arg Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65 70 75 80Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Gly Tyr Ser Leu Arg Asn 85 90 95Ile Asp Asn Ala 10012016PRTOryctolagus cuniculus 120Ile Ile Tyr Gly Ser Asp Glu Thr Ala Tyr Ala Thr Ser Ala Ile Gly1 5 10 1512116PRTOryctolagus cuniculus 121Met Ile Tyr Gly Ser Asp Glu Thr Ala Tyr Ala Asn Ser Ala Ile Gly1 5 10 15122123PRTOryctolagus cuniculus 122Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Thr Phe Ala Ala Val Leu Thr Gln Thr Pro Ser Pro 20 25 30Val Ser Ala Ala Val Gly Gly Thr Val Thr Ile Ser Cys Gln Ser Ser 35 40 45Gln Ser Val Gly Asn Asn Gln Asp Leu Ser Trp Phe Gln Gln Arg Pro 50 55 60Gly Gln Pro Pro Lys Leu Leu Ile Tyr Glu Ile Ser Lys Leu Glu Ser65 70 75 80Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr His Phe Thr 85 90 95Leu Thr Ile Ser Gly Val Gln Cys Asp Asp Ala Ala Thr Tyr Tyr Cys 100 105 110Leu Gly Gly Tyr Asp Asp Asp Ala Asp Asn Ala 115 120123128PRTOryctolagus cuniculus 123Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys His Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Ser 35 40 45Ser Arg Thr Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 50 55 60Trp Ile Gly Tyr Ile Trp Ser Gly Gly Ser Thr Tyr Tyr Ala Thr Trp65 70 75 80Ala Lys Gly Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu 85 90 95Lys Ile Thr Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala 100 105 110Arg Leu Gly Asp Thr Gly Gly His Ala Tyr Ala Thr Arg Leu Asn Leu 115 120 12512413PRTOryctolagus cuniculus 124Gln Ser Ser Gln Ser Val Gly Asn Asn Gln Asp Leu Ser1 5 101257PRTOryctolagus cuniculus 125Glu Ile Ser Lys Leu Glu Ser1 512611PRTOryctolagus cuniculus 126Leu Gly Gly Tyr Asp Asp Asp Ala Asp Asn Ala1 5 101275PRTOryctolagus cuniculus 127Ser Arg Thr Met Ser1 512816PRTOryctolagus cuniculus 128Tyr Ile Trp Ser Gly Gly Ser Thr Tyr Tyr Ala Thr Trp Ala Lys Gly1 5 10 1512915PRTOryctolagus cuniculus 129Leu Gly Asp Thr Gly Gly His Ala Tyr Ala Thr Arg Leu Asn Leu1 5 10 15130369DNAOryctolagus cuniculus 130atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60acatttgcag ccgtgctgac ccagacacca tcacccgtgt ctgcagctgt gggaggcaca 120gtcaccatca gttgccagtc cagtcagagt gttggtaata accaggactt atcctggttt 180cagcagagac cagggcagcc tcccaagctc ctgatctacg aaatatccaa actggaatct 240ggggtcccat cgcggttcag cggcagtgga tctgggacac acttcactct caccatcagc 300ggcgtacagt gtgacgatgc tgccacttac tactgtctag gcggttatga tgatgatgct 360gataatgct 369131384DNAOryctolagus cuniculus 131atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcac 60tcggtggagg agtccggggg tcgcctggtc acgcctggga cacccctgac actcacctgc 120acagtctctg gattctccct cagtagtcgt acaatgtcct gggtccgcca ggctccaggg 180aaggggctgg agtggatcgg atacatttgg agtggtggta gcacatacta cgcgacctgg 240gcgaaaggcc gattcaccat ctccaaaacc tcgaccacgg tggatctgaa aatcaccagt 300ccgacaaccg aggacacggc cacctatttc tgtgccagat tgggcgatac tggtggtcac 360gcttatgcta ctcgcttaaa tctc 38413239DNAOryctolagus cuniculus 132cagtccagtc agagtgttgg taataaccag gacttatcc 3913321DNAOryctolagus cuniculus 133gaaatatcca aactggaatc t 2113433DNAOryctolagus cuniculus 134ctaggcggtt atgatgatga tgctgataat gct 3313515DNAOryctolagus cuniculus 135agtcgtacaa tgtcc 1513648DNAOryctolagus cuniculus 136tacatttgga gtggtggtag cacatactac gcgacctggg cgaaaggc 4813745DNAOryctolagus cuniculus 137ttgggcgata ctggtggtca cgcttatgct actcgcttaa atctc 45138123PRTOryctolagus cuniculus 138Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Thr Phe Ala Ala Val Leu Thr Gln Thr Pro Ser Ser 20 25 30Val Ser Ala Ala Val Gly Gly Thr Val Ser Ile Ser Cys Gln Ser Ser 35 40 45Gln Ser Val Tyr Ser Asn Lys Tyr Leu Ala Trp Tyr Gln Gln Lys Pro 50 55 60Gly Gln Pro Pro Lys Leu Leu Ile Tyr Trp Thr Ser Lys Leu Ala Ser65 70 75 80Gly Ala Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Gln Phe Thr 85 90 95Leu Thr Ile Ser Gly Val Gln Cys Asp Asp Ala Ala Thr Tyr Tyr Cys 100 105 110Leu Gly Ala Tyr Asp Asp Asp Ala Asp Asn Ala 115 120139126PRTOryctolagus cuniculus 139Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Lys Pro 20 25 30Asp Glu Thr Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Leu Glu 35 40 45Gly Gly Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 50 55 60Trp Ile Gly Ile Ser Tyr Asp Ser Gly Ser Thr Tyr Tyr Ala Ser Trp65 70 75 80Ala Lys Gly Arg Phe Thr Ile Ser Lys Thr Ser Ser Thr Thr Val Asp 85 90 95Leu Lys Met Thr Ser Leu Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys 100 105 110Val Arg Ser Leu Lys Tyr Pro Thr Val Thr Ser Asp Asp Leu 115 120 12514013PRTOryctolagus cuniculus 140Gln Ser Ser Gln Ser Val Tyr Ser Asn Lys Tyr Leu Ala1 5 101417PRTOryctolagus cuniculus 141Trp Thr Ser Lys Leu Ala Ser1 514211PRTOryctolagus cuniculus 142Leu Gly Ala Tyr Asp Asp Asp Ala Asp Asn Ala1 5 101435PRTOryctolagus cuniculus 143Gly Gly Tyr Met Thr1 514416PRTOryctolagus cuniculus 144Ile Ser Tyr Asp Ser Gly Ser Thr Tyr Tyr Ala Ser Trp Ala Lys Gly1 5 10 1514512PRTOryctolagus cuniculus 145Ser Leu Lys Tyr Pro Thr Val Thr Ser Asp Asp Leu1 5 10146369DNAOryctolagus cuniculus 146atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60acatttgcag ccgtgctgac ccagacacca tcgtccgtgt ctgcagctgt gggaggcaca 120gtcagcatca gttgccagtc cagtcagagt gtttatagta ataagtacct agcctggtat 180cagcagaaac cagggcagcc tcccaagctc ctgatctact ggacatccaa actggcatct 240ggggccccat cacggttcag cggcagtgga tctgggacac aattcactct caccatcagc 300ggcgtgcagt gtgacgatgc tgccacttac tactgtctag gcgcttatga tgatgatgct 360gataatgct 369147378DNAOryctolagus cuniculus 147atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60tcggtggaag agtccggggg tcgcctggtc aagcctgacg aaaccctgac actcacctgc 120acagcctctg gattctccct ggagggcggc tacatgacct gggtccgcca ggctccaggg 180aaggggctgg aatggatcgg aatcagttat gatagtggta gcacatacta cgcgagctgg 240gcgaaaggcc gattcaccat ctccaagacc tcgtcgacca cggtggatct gaaaatgacc 300agtctgacaa ccgaggacac ggccacctat ttctgcgtca gatcactaaa atatcctact 360gttacttctg atgacttg 37814839DNAOryctolagus cuniculus 148cagtccagtc agagtgttta tagtaataag tacctagcc 3914921DNAOryctolagus cuniculus 149tggacatcca aactggcatc t 2115033DNAOryctolagus cuniculus 150ctaggcgctt atgatgatga tgctgataat gct 3315115DNAOryctolagus cuniculus 151ggcggctaca tgacc 1515248DNAOryctolagus cuniculus 152atcagttatg atagtggtag cacatactac gcgagctggg cgaaaggc 4815336DNAOryctolagus cuniculus 153tcactaaaat atcctactgt tacttctgat gacttg 36154123PRTOryctolagus cuniculus 154Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Thr Phe Ala Ala Val Leu Thr Gln Thr Pro Ser Pro 20 25 30Val Ser Ala Ala Val Gly Gly Thr Val Thr Ile Ser Cys Gln Ser Ser 35 40 45Gln Ser Val Tyr Asn Asn Asn Asp Leu Ala Trp Tyr Gln Gln Lys Pro 50 55 60Gly Gln Pro Pro Lys Leu Leu Ile Tyr Tyr Ala Ser Thr Leu Ala Ser65 70 75 80Gly Val Pro Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Gln Phe Thr 85 90 95Leu Thr Ile Ser Gly Val Gln Cys Asp Asp Ala Ala Ala Tyr Tyr Cys 100 105 110Leu Gly Gly Tyr Asp Asp Asp Ala Asp Asn Ala 115 120155129PRTOryctolagus cuniculus 155Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu Thr Leu Thr Cys Thr Val Ser Gly Leu Ser Leu Ser 35 40 45Ser Asn Thr Ile Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 50 55 60Trp Ile Gly Tyr Ile Trp Ser Gly Gly Ser Thr Tyr Tyr Ala Ser Trp65 70 75 80Val Asn Gly Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu 85 90 95Lys Ile Thr Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala 100 105 110Arg Gly Gly Tyr Ala Ser Gly Gly Tyr Pro Tyr Ala Thr Arg Leu Asp 115 120 125Leu15613PRTOryctolagus cuniculus 156Gln Ser Ser Gln Ser Val Tyr Asn Asn Asn Asp Leu Ala1 5 101577PRTOryctolagus cuniculus 157Tyr Ala Ser Thr Leu Ala Ser1 515811PRTOryctolagus cuniculus 158Leu Gly Gly Tyr Asp Asp Asp Ala Asp Asn Ala1 5 101595PRTOryctolagus cuniculus 159Ser Asn Thr Ile Asn1 516016PRTOryctolagus cuniculus 160Tyr Ile Trp Ser Gly Gly Ser Thr Tyr Tyr Ala Ser Trp Val Asn Gly1 5 10 1516116PRTOryctolagus cuniculus 161Gly Gly Tyr Ala Ser Gly Gly Tyr Pro Tyr Ala Thr Arg Leu Asp Leu1 5 10 15162369DNAOryctolagus cuniculus 162atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60acatttgcag ccgtgctgac ccagacacca tcacccgtgt ctgcagctgt gggaggcaca 120gtcaccatca gttgccagtc cagtcagagt gtttataata ataacgactt agcctggtat 180cagcagaaac cagggcagcc tcctaaactc ctgatctatt atgcatccac tctggcatct 240ggggtcccat cgcggttcaa aggcagtgga tctgggacac agttcactct caccatcagc 300ggcgtgcagt gtgacgatgc tgccgcttac tactgtctag gcggttatga tgatgatgct 360gataatgct 369163387DNAOryctolagus cuniculus 163atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60tcggtggagg agtccggggg tcgcctggtc acgcctggga cacccctgac actcacctgc 120acagtatctg gattatccct cagtagcaat acaataaact gggtccgcca

ggctccaggg 180aaggggctgg agtggatcgg atacatttgg agtggtggta gtacatacta cgcgagctgg 240gtgaatggtc gattcaccat ctccaaaacc tcgaccacgg tggatctgaa aatcaccagt 300ccgacaaccg aggacacggc cacctatttc tgtgccagag ggggttacgc tagtggtggt 360tatccttatg ccactcggtt ggatctc 38716439DNAOryctolagus cuniculus 164cagtccagtc agagtgttta taataataac gacttagcc 3916521DNAOryctolagus cuniculus 165tatgcatcca ctctggcatc t 2116633DNAOryctolagus cuniculus 166ctaggcggtt atgatgatga tgctgataat gct 3316715DNAOryctolagus cuniculus 167agcaatacaa taaac 1516848DNAOryctolagus cuniculus 168tacatttgga gtggtggtag tacatactac gcgagctggg tgaatggt 4816948DNAOryctolagus cuniculus 169gggggttacg ctagtggtgg ttatccttat gccactcggt tggatctc 48170123PRTOryctolagus cuniculus 170Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Thr Phe Ala Ala Val Leu Thr Gln Thr Pro Ser Ser 20 25 30Val Ser Ala Ala Val Gly Gly Thr Val Thr Ile Asn Cys Gln Ser Ser 35 40 45Gln Ser Val Tyr Asn Asn Asp Tyr Leu Ser Trp Tyr Gln Gln Arg Pro 50 55 60Gly Gln Arg Pro Lys Leu Leu Ile Tyr Gly Ala Ser Lys Leu Ala Ser65 70 75 80Gly Val Pro Ser Arg Phe Lys Gly Ser Gly Ser Gly Lys Gln Phe Thr 85 90 95Leu Thr Ile Ser Gly Val Gln Cys Asp Asp Ala Ala Thr Tyr Tyr Cys 100 105 110Leu Gly Asp Tyr Asp Asp Asp Ala Asp Asn Thr 115 120171123PRTOryctolagus cuniculus 171Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Leu Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Thr Leu Ser 35 40 45Thr Asn Tyr Tyr Leu Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 50 55 60Glu Trp Ile Gly Ile Ile Tyr Pro Ser Gly Asn Thr Tyr Cys Ala Lys65 70 75 80Trp Ala Lys Gly Arg Phe Thr Ile Ser Lys Thr Ser Ser Thr Thr Val 85 90 95Asp Leu Lys Met Thr Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe 100 105 110Cys Ala Arg Asn Tyr Gly Gly Asp Glu Ser Leu 115 12017213PRTOryctolagus cuniculus 172Gln Ser Ser Gln Ser Val Tyr Asn Asn Asp Tyr Leu Ser1 5 101737PRTOryctolagus cuniculus 173Gly Ala Ser Lys Leu Ala Ser1 517411PRTOryctolagus cuniculus 174Leu Gly Asp Tyr Asp Asp Asp Ala Asp Asn Thr1 5 101756PRTOryctolagus cuniculus 175Thr Asn Tyr Tyr Leu Ser1 517616PRTOryctolagus cuniculus 176Ile Ile Tyr Pro Ser Gly Asn Thr Tyr Cys Ala Lys Trp Ala Lys Gly1 5 10 151778PRTOryctolagus cuniculus 177Asn Tyr Gly Gly Asp Glu Ser Leu1 5178369DNAOryctolagus cuniculus 178atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60acatttgcag ccgtgctgac ccagacacca tcctccgtgt ctgcagctgt gggaggcaca 120gtcaccatca attgccagtc cagtcagagt gtttataata acgactactt atcctggtat 180caacagaggc cagggcaacg tcccaagctc ctaatctatg gtgcttccaa actggcatct 240ggggtcccgt cacggttcaa aggcagtgga tctgggaaac agtttactct caccatcagc 300ggcgtgcagt gtgacgatgc tgccacttac tactgtctgg gcgattatga tgatgatgct 360gataatact 369179369DNAOryctolagus cuniculus 179atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60tcgctggagg agtccggggg tcgcctggtc acgcctggga cacccctgac actcacttgc 120acagtctctg gattcaccct cagtaccaac tactacctga gctgggtccg ccaggctcca 180gggaaggggc tagaatggat cggaatcatt tatcctagtg gtaacacata ttgcgcgaag 240tgggcgaaag gccgattcac catctccaaa acctcgtcga ccacggtgga tctgaaaatg 300accagtccga caaccgagga cacagccacg tatttctgtg ccagaaatta tggtggtgat 360gaaagtttg 36918039DNAOryctolagus cuniculus 180cagtccagtc agagtgttta taataacgac tacttatcc 3918121DNAOryctolagus cuniculus 181ggtgcttcca aactggcatc t 2118233DNAOryctolagus cuniculus 182ctgggcgatt atgatgatga tgctgataat act 3318318DNAOryctolagus cuniculus 183accaactact acctgagc 1818448DNAOryctolagus cuniculus 184atcatttatc ctagtggtaa cacatattgc gcgaagtggg cgaaaggc 4818524DNAOryctolagus cuniculus 185aattatggtg gtgatgaaag tttg 24186119PRTOryctolagus cuniculus 186Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Arg Cys Asp Val Val Met Thr Gln Thr Pro Ala Ser 20 25 30Val Glu Ala Ala Val Gly Gly Thr Val Thr Ile Lys Cys Gln Ala Ser 35 40 45Glu Thr Ile Gly Asn Ala Leu Ala Trp Tyr Gln Gln Lys Ser Gly Gln 50 55 60Pro Pro Lys Leu Leu Ile Tyr Lys Ala Ser Lys Leu Ala Ser Gly Val65 70 75 80Pro Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Glu Tyr Thr Leu Thr 85 90 95Ile Ser Asp Leu Glu Cys Ala Asp Ala Ala Thr Tyr Tyr Cys Gln Trp 100 105 110Cys Tyr Phe Gly Asp Ser Val 115187128PRTOryctolagus cuniculus 187Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Thr Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Glu Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln 20 25 30Pro Glu Gly Ser Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Asp Phe 35 40 45Ser Ser Gly Tyr Tyr Met Cys Trp Val Arg Gln Ala Pro Gly Lys Gly 50 55 60Leu Glu Trp Ile Ala Cys Ile Phe Thr Ile Thr Thr Asn Thr Tyr Tyr65 70 75 80Ala Ser Trp Ala Lys Gly Arg Phe Thr Ile Ser Lys Thr Ser Ser Thr 85 90 95Thr Val Thr Leu Gln Met Thr Ser Leu Thr Ala Ala Asp Thr Ala Thr 100 105 110Tyr Leu Cys Ala Arg Gly Ile Tyr Ser Asp Asn Asn Tyr Tyr Ala Leu 115 120 12518811PRTOryctolagus cuniculus 188Gln Ala Ser Glu Thr Ile Gly Asn Ala Leu Ala1 5 101897PRTOryctolagus cuniculus 189Lys Ala Ser Lys Leu Ala Ser1 51909PRTOryctolagus cuniculus 190Gln Trp Cys Tyr Phe Gly Asp Ser Val1 51916PRTOryctolagus cuniculus 191Ser Gly Tyr Tyr Met Cys1 519217PRTOryctolagus cuniculus 192Cys Ile Phe Thr Ile Thr Thr Asn Thr Tyr Tyr Ala Ser Trp Ala Lys1 5 10 15Gly19311PRTOryctolagus cuniculus 193Gly Ile Tyr Ser Asp Asn Asn Tyr Tyr Ala Leu1 5 10194357DNAOryctolagus cuniculus 194atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60agatgtgatg ttgtgatgac ccagactcca gcctccgtgg aggcagctgt gggaggcaca 120gtcaccatca agtgccaggc cagtgagacc attggcaatg cattagcctg gtatcagcag 180aaatcagggc agcctcccaa gctcctgatc tacaaggcat ccaaactggc atctggggtc 240ccatcgcggt tcaaaggcag tggatctggg acagagtaca ctctcaccat cagcgacctg 300gagtgtgccg atgctgccac ttactactgt caatggtgtt attttggtga tagtgtt 357195384DNAOryctolagus cuniculus 195atggagactg ggctgcgctg gcttctcctg gtcactgtgc tcaaaggtgt ccagtgtcag 60gagcagctgg tggagtccgg gggaggcctg gtccagcctg agggatccct gacactcacc 120tgcacagcct ctggattcga cttcagtagc ggctactaca tgtgctgggt ccgccaggct 180ccagggaagg ggctggagtg gatcgcgtgt attttcacta ttactactaa cacttactac 240gcgagctggg cgaaaggccg attcaccatc tccaagacct cgtcgaccac ggtgactctg 300caaatgacca gtctgacagc cgcggacacg gccacctatc tctgtgcgag agggatttat 360tctgataata attattatgc cttg 38419633DNAOryctolagus cuniculus 196caggccagtg agaccattgg caatgcatta gcc 3319721DNAOryctolagus cuniculus 197aaggcatcca aactggcatc t 2119827DNAOryctolagus cuniculus 198caatggtgtt attttggtga tagtgtt 2719918DNAOryctolagus cuniculus 199agcggctact acatgtgc 1820051DNAOryctolagus cuniculus 200tgtattttca ctattactac taacacttac tacgcgagct gggcgaaagg c 5120133DNAOryctolagus cuniculus 201gggatttatt ctgataataa ttattatgcc ttg 33202119PRTOryctolagus cuniculus 202Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Arg Cys Asp Val Val Met Thr Gln Thr Pro Ala Ser 20 25 30Val Glu Ala Ala Val Gly Gly Thr Val Thr Ile Lys Cys Gln Ala Ser 35 40 45Glu Ser Ile Gly Asn Ala Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln 50 55 60Pro Pro Lys Leu Leu Ile Tyr Lys Ala Ser Thr Leu Ala Ser Gly Val65 70 75 80Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr 85 90 95Ile Ser Gly Val Gln Cys Ala Asp Ala Ala Ala Tyr Tyr Cys Gln Trp 100 105 110Cys Tyr Phe Gly Asp Ser Val 115203128PRTOryctolagus cuniculus 203Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Gln Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys 20 25 30Pro Gly Ala Ser Leu Thr Leu Thr Cys Lys Ala Ser Gly Phe Ser Phe 35 40 45Ser Ser Gly Tyr Tyr Met Cys Trp Val Arg Gln Ala Pro Gly Lys Gly 50 55 60Leu Glu Ser Ile Ala Cys Ile Phe Thr Ile Thr Asp Asn Thr Tyr Tyr65 70 75 80Ala Asn Trp Ala Lys Gly Arg Phe Thr Ile Ser Lys Pro Ser Ser Pro 85 90 95Thr Val Thr Leu Gln Met Thr Ser Leu Thr Ala Ala Asp Thr Ala Thr 100 105 110Tyr Phe Cys Ala Arg Gly Ile Tyr Ser Thr Asp Asn Tyr Tyr Ala Leu 115 120 12520411PRTOryctolagus cuniculus 204Gln Ala Ser Glu Ser Ile Gly Asn Ala Leu Ala1 5 102057PRTOryctolagus cuniculus 205Lys Ala Ser Thr Leu Ala Ser1 52069PRTOryctolagus cuniculus 206Gln Trp Cys Tyr Phe Gly Asp Ser Val1 52076PRTOryctolagus cuniculus 207Ser Gly Tyr Tyr Met Cys1 520817PRTOryctolagus cuniculus 208Cys Ile Phe Thr Ile Thr Asp Asn Thr Tyr Tyr Ala Asn Trp Ala Lys1 5 10 15Gly20911PRTOryctolagus cuniculus 209Gly Ile Tyr Ser Thr Asp Asn Tyr Tyr Ala Leu1 5 10210357DNAOryctolagus cuniculus 210atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60agatgtgatg ttgtgatgac ccagactcca gcctccgtgg aggcagctgt gggaggcaca 120gtcaccatca agtgccaggc cagtgagagc attggcaatg cattagcctg gtatcagcag 180aaaccagggc agcctcccaa gctcctgatc tacaaggcat ccactctggc atctggggtc 240ccatcgcggt tcagcggcag tggatctggg acagagttca ctctcaccat cagcggcgtg 300cagtgtgccg atgctgccgc ttactactgt caatggtgtt attttggtga tagtgtt 357211384DNAOryctolagus cuniculus 211atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60cagcagctgg tggagtccgg gggaggcctg gtcaagccgg gggcatccct gacactcacc 120tgcaaagcct ctggattctc cttcagtagc ggctactaca tgtgctgggt ccgccaggct 180ccagggaagg ggctggagtc gatcgcatgc atttttacta ttactgataa cacttactac 240gcgaactggg cgaaaggccg attcaccatc tccaagccct cgtcgcccac ggtgactctg 300caaatgacca gtctgacagc cgcggacacg gccacctatt tctgtgcgag ggggatttat 360tctactgata attattatgc cttg 38421233DNAOryctolagus cuniculus 212caggccagtg agagcattgg caatgcatta gcc 3321321DNAOryctolagus cuniculus 213aaggcatcca ctctggcatc t 2121427DNAOryctolagus cuniculus 214caatggtgtt attttggtga tagtgtt 2721518DNAOryctolagus cuniculus 215agcggctact acatgtgc 1821651DNAOryctolagus cuniculus 216tgcattttta ctattactga taacacttac tacgcgaact gggcgaaagg c 5121733DNAOryctolagus cuniculus 217gggatttatt ctactgataa ttattatgcc ttg 33218123PRTOryctolagus cuniculus 218Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Arg Cys Asp Val Val Met Thr Gln Thr Pro Ala Ser 20 25 30Val Glu Ala Ala Val Gly Gly Thr Val Thr Ile Lys Cys Gln Ala Ser 35 40 45Gln Ser Val Ser Ser Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Gln 50 55 60Pro Pro Lys Leu Leu Ile Tyr Arg Ala Ser Thr Leu Glu Ser Gly Val65 70 75 80Pro Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr 85 90 95Ile Ser Asp Leu Glu Cys Ala Asp Ala Ala Thr Tyr Tyr Cys Gln Cys 100 105 110Thr Tyr Gly Thr Ser Ser Ser Tyr Gly Ala Ala 115 120219133PRTOryctolagus cuniculus 219Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu Thr Leu Thr Cys Thr Val Ser Gly Ile Ser Leu Ser 35 40 45Ser Asn Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 50 55 60Trp Ile Gly Ile Ile Ser Tyr Ser Gly Thr Thr Tyr Tyr Ala Ser Trp65 70 75 80Ala Lys Gly Arg Phe Thr Ile Ser Lys Thr Ser Ser Thr Thr Val Asp 85 90 95Leu Lys Ile Thr Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys 100 105 110Ala Arg Asp Asp Pro Thr Thr Val Met Val Met Leu Ile Pro Phe Gly 115 120 125Ala Gly Met Asp Leu 13022011PRTOryctolagus cuniculus 220Gln Ala Ser Gln Ser Val Ser Ser Tyr Leu Asn1 5 102217PRTOryctolagus cuniculus 221Arg Ala Ser Thr Leu Glu Ser1 522213PRTOryctolagus cuniculus 222Gln Cys Thr Tyr Gly Thr Ser Ser Ser Tyr Gly Ala Ala1 5 102235PRTOryctolagus cuniculus 223Ser Asn Ala Ile Ser1 522416PRTOryctolagus cuniculus 224Ile Ile Ser Tyr Ser Gly Thr Thr Tyr Tyr Ala Ser Trp Ala Lys Gly1 5 10 1522519PRTOryctolagus cuniculus 225Asp Asp Pro Thr Thr Val Met Val Met Leu Ile Pro Phe Gly Ala Gly1 5 10 15Met Asp Leu226369DNAOryctolagus cuniculus 226atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60agatgtgatg ttgtgatgac ccagactcca gcctccgtgg aggcagctgt gggaggcaca 120gtcaccatca agtgccaggc cagtcagagc gttagtagct acttaaactg gtatcagcag 180aaaccagggc agcctcccaa gctcctgatc tacagggcat ccactctgga atctggggtc 240ccatcgcggt tcaaaggcag tggatctggg acagagttca ctctcaccat cagcgacctg 300gagtgtgccg atgctgccac ttactactgt caatgtactt atggtactag tagtagttat 360ggtgctgct 369227399DNAOryctolagus cuniculus 227atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60tcggtggagg agtccggggg tcgcctggtc acgcctggga cacccctgac actcacctgc 120accgtctctg gtatctccct cagtagcaat gcaataagct gggtccgcca ggctccaggg 180aaggggctgg aatggatcgg aatcattagt tatagtggta ccacatacta cgcgagctgg 240gcgaaaggcc gattcaccat ctccaaaacc tcgtcgacca cggtggatct gaaaatcact 300agtccgacaa ccgaggacac ggccacctac ttctgtgcca gagatgaccc tacgacagtt 360atggttatgt tgataccttt tggagccggc atggacctc 39922833DNAOryctolagus cuniculus 228caggccagtc agagcgttag tagctactta aac 3322921DNAOryctolagus cuniculus 229agggcatcca ctctggaatc t 2123039DNAOryctolagus cuniculus 230caatgtactt atggtactag tagtagttat ggtgctgct 3923115DNAOryctolagus cuniculus 231agcaatgcaa taagc 1523248DNAOryctolagus cuniculus 232atcattagtt atagtggtac cacatactac gcgagctggg cgaaaggc 4823357DNAOryctolagus cuniculus 233gatgacccta cgacagttat ggttatgttg ataccttttg gagccggcat ggacctc 57234125PRTOryctolagus cuniculus 234Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Thr Phe Ala Gln Val Leu Thr Gln Thr Ala Ser Pro 20 25 30Val Ser Ala Ala Val Gly Gly Thr Val Thr Ile Asn Cys

Gln Ala Ser 35 40 45Gln Ser Val Tyr Lys Asn Asn Tyr Leu Ser Trp Tyr Gln Gln Lys Pro 50 55 60Gly Gln Pro Pro Lys Gly Leu Ile Tyr Ser Ala Ser Thr Leu Asp Ser65 70 75 80Gly Val Pro Leu Arg Phe Ser Gly Ser Gly Ser Gly Thr Gln Phe Thr 85 90 95Leu Thr Ile Ser Asp Val Gln Cys Asp Asp Ala Ala Thr Tyr Tyr Cys 100 105 110Leu Gly Ser Tyr Asp Cys Ser Ser Gly Asp Cys Tyr Ala 115 120 125235119PRTOryctolagus cuniculus 235Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Leu Glu Glu Ser Gly Gly Asp Leu Val Lys Pro 20 25 30Glu Gly Ser Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Phe Ser 35 40 45Ser Tyr Trp Met Cys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 50 55 60Trp Ile Ala Cys Ile Val Thr Gly Asn Gly Asn Thr Tyr Tyr Ala Asn65 70 75 80Trp Ala Lys Gly Arg Phe Thr Ile Ser Lys Thr Ser Ser Thr Thr Val 85 90 95Thr Leu Gln Met Thr Ser Leu Thr Ala Ala Asp Thr Ala Thr Tyr Phe 100 105 110Cys Ala Lys Ala Tyr Asp Leu 11523613PRTOryctolagus cuniculus 236Gln Ala Ser Gln Ser Val Tyr Lys Asn Asn Tyr Leu Ser1 5 102377PRTOryctolagus cuniculus 237Ser Ala Ser Thr Leu Asp Ser1 523813PRTOryctolagus cuniculus 238Leu Gly Ser Tyr Asp Cys Ser Ser Gly Asp Cys Tyr Ala1 5 102395PRTOryctolagus cuniculus 239Ser Tyr Trp Met Cys1 524017PRTOryctolagus cuniculus 240Cys Ile Val Thr Gly Asn Gly Asn Thr Tyr Tyr Ala Asn Trp Ala Lys1 5 10 15Gly2414PRTOryctolagus cuniculus 241Ala Tyr Asp Leu1242375DNAOryctolagus cuniculus 242atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60acatttgccc aagtgctgac ccagactgca tcgcccgtgt ctgcagctgt gggaggcaca 120gtcaccatca actgccaggc cagtcagagt gtttataaga acaactactt atcctggtat 180cagcagaaac cagggcagcc tcccaaaggc ctgatctatt ctgcatcgac tctagattct 240ggggtcccat tgcggttcag cggcagtgga tctgggacac agttcactct caccatcagc 300gacgtgcagt gtgacgatgc tgccacttac tactgtctag gcagttatga ttgtagtagt 360ggtgattgtt atgct 375243357DNAOryctolagus cuniculus 243atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60tcgttggagg agtccggggg agacctggtc aagcctgagg gatccctgac actcacctgc 120acagcctctg gattctcctt cagtagctac tggatgtgct gggtccgcca ggctccaggg 180aaggggctgg agtggatcgc atgcattgtt actggtaatg gtaacactta ctacgcgaac 240tgggcgaaag gccgattcac catctccaaa acctcgtcga ccacggtgac tctgcaaatg 300accagtctga cagccgcgga cacggccacc tatttttgtg cgaaagccta tgacttg 35724439DNAOryctolagus cuniculus 244caggccagtc agagtgttta taagaacaac tacttatcc 3924521DNAOryctolagus cuniculus 245tctgcatcga ctctagattc t 2124639DNAOryctolagus cuniculus 246ctaggcagtt atgattgtag tagtggtgat tgttatgct 3924715DNAOryctolagus cuniculus 247agctactgga tgtgc 1524851DNAOryctolagus cuniculus 248tgcattgtta ctggtaatgg taacacttac tacgcgaact gggcgaaagg c 5124912DNAOryctolagus cuniculus 249gcctatgact tg 12250123PRTOryctolagus cuniculus 250Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ser Thr Phe Ala Ala Val Leu Thr Gln Thr Pro Ser Pro 20 25 30Val Ser Ala Ala Val Gly Gly Thr Val Ser Ile Ser Cys Gln Ala Ser 35 40 45Gln Ser Val Tyr Asp Asn Asn Tyr Leu Ser Trp Tyr Gln Gln Lys Pro 50 55 60Gly Gln Pro Pro Lys Leu Leu Ile Tyr Gly Ala Ser Thr Leu Ala Ser65 70 75 80Gly Val Pro Ser Arg Phe Lys Gly Thr Gly Ser Gly Thr Gln Phe Thr 85 90 95Leu Thr Ile Thr Asp Val Gln Cys Asp Asp Ala Ala Thr Tyr Tyr Cys 100 105 110Ala Gly Val Phe Asn Asp Asp Ser Asp Asp Ala 115 120251125PRTOryctolagus cuniculus 251Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Pro Lys Gly1 5 10 15Val Gln Cys Gln Ser Leu Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu Thr Leu Thr Cys Thr Leu Ser Gly Phe Ser Leu Ser 35 40 45Ala Tyr Tyr Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 50 55 60Trp Ile Gly Phe Ile Thr Leu Ser Asp His Ile Ser Tyr Ala Arg Trp65 70 75 80Ala Lys Gly Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu 85 90 95Lys Met Thr Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala 100 105 110Arg Ser Arg Gly Trp Gly Ala Met Gly Arg Leu Asp Leu 115 120 12525213PRTOryctolagus cuniculus 252Gln Ala Ser Gln Ser Val Tyr Asp Asn Asn Tyr Leu Ser1 5 102537PRTOryctolagus cuniculus 253Gly Ala Ser Thr Leu Ala Ser1 525411PRTOryctolagus cuniculus 254Ala Gly Val Phe Asn Asp Asp Ser Asp Asp Ala1 5 102555PRTOryctolagus cuniculus 255Ala Tyr Tyr Met Ser1 525616PRTOryctolagus cuniculus 256Phe Ile Thr Leu Ser Asp His Ile Ser Tyr Ala Arg Trp Ala Lys Gly1 5 10 1525712PRTOryctolagus cuniculus 257Ser Arg Gly Trp Gly Ala Met Gly Arg Leu Asp Leu1 5 10258369DNAOryctolagus cuniculus 258atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggttcc 60acatttgccg ccgtgctgac ccagactcca tctcccgtgt ctgcagctgt gggaggcaca 120gtcagcatca gttgccaggc cagtcagagt gtttatgaca acaactattt atcctggtat 180cagcagaaac caggacagcc tcccaagctc ctgatctatg gtgcatccac tctggcatct 240ggggtcccat cgcggttcaa aggcacggga tctgggacac agttcactct caccatcaca 300gacgtgcagt gtgacgatgc tgccacttac tattgtgcag gcgtttttaa tgatgatagt 360gatgatgcc 369259375DNAOryctolagus cuniculus 259atggagactg ggctgcgctg gcttctcctg gtcgctgtgc ccaaaggtgt ccagtgtcag 60tcgctggagg agtccggggg tcgcctggtc acgcctggga cacccctgac actcacctgc 120acactctctg gattctccct cagtgcatac tatatgagct gggtccgcca ggctccaggg 180aaggggctgg aatggatcgg attcattact ctgagtgatc atatatctta cgcgaggtgg 240gcgaaaggcc gattcaccat ctccaaaacc tcgaccacgg tggatctgaa aatgaccagt 300ccgacaaccg aggacacggc cacctatttc tgtgccagga gtcgtggctg gggtgcaatg 360ggtcggttgg atctc 37526039DNAOryctolagus cuniculus 260caggccagtc agagtgttta tgacaacaac tatttatcc 3926121DNAOryctolagus cuniculus 261ggtgcatcca ctctggcatc t 2126233DNAOryctolagus cuniculus 262gcaggcgttt ttaatgatga tagtgatgat gcc 3326315DNAOryctolagus cuniculus 263gcatactata tgagc 1526448DNAOryctolagus cuniculus 264ttcattactc tgagtgatca tatatcttac gcgaggtggg cgaaaggc 4826536DNAOryctolagus cuniculus 265agtcgtggct ggggtgcaat gggtcggttg gatctc 36266123PRTOryctolagus cuniculus 266Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Thr Phe Ala Ala Val Leu Thr Gln Thr Pro Ser Pro 20 25 30Val Ser Ala Ala Val Gly Gly Thr Val Thr Ile Ser Cys Gln Ala Ser 35 40 45Gln Ser Val Tyr Asn Asn Lys Asn Leu Ala Trp Tyr Gln Gln Lys Ser 50 55 60Gly Gln Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Leu Ala Ser65 70 75 80Gly Val Ser Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Gln Phe Thr 85 90 95Leu Thr Val Ser Gly Val Gln Cys Asp Asp Ala Ala Thr Tyr Tyr Cys 100 105 110Leu Gly Val Phe Asp Asp Asp Ala Asp Asn Ala 115 120267121PRTOryctolagus cuniculus 267Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Leu Ser 35 40 45Ser Tyr Ser Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 50 55 60Tyr Ile Gly Val Ile Gly Thr Ser Gly Ser Thr Tyr Tyr Ala Thr Trp65 70 75 80Ala Lys Gly Arg Phe Thr Ile Ser Arg Thr Ser Thr Thr Val Ala Leu 85 90 95Lys Ile Thr Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Val 100 105 110Arg Ser Leu Ser Ser Ile Thr Phe Leu 115 12026813PRTOryctolagus cuniculus 268Gln Ala Ser Gln Ser Val Tyr Asn Asn Lys Asn Leu Ala1 5 102697PRTOryctolagus cuniculus 269Trp Ala Ser Thr Leu Ala Ser1 527011PRTOryctolagus cuniculus 270Leu Gly Val Phe Asp Asp Asp Ala Asp Asn Ala1 5 102715PRTOryctolagus cuniculus 271Ser Tyr Ser Met Thr1 527216PRTOryctolagus cuniculus 272Val Ile Gly Thr Ser Gly Ser Thr Tyr Tyr Ala Thr Trp Ala Lys Gly1 5 10 152738PRTOryctolagus cuniculus 273Ser Leu Ser Ser Ile Thr Phe Leu1 5274369DNAOryctolagus cuniculus 274atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60acattcgcag ccgtgctgac ccagacacca tcgcccgtgt ctgcggctgt gggaggcaca 120gtcaccatca gttgccaggc cagtcagagt gtttataaca acaaaaattt agcctggtat 180cagcagaaat cagggcagcc tcccaagctc ctgatctact gggcatccac tctggcatct 240ggggtctcat cgcggttcag cggcagtgga tctgggacac agttcactct caccgtcagc 300ggcgtgcagt gtgacgatgc tgccacttac tactgtctag gcgtttttga tgatgatgct 360gataatgct 369275363DNAOryctolagus cuniculus 275atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccaatgtcag 60tcggtggagg agtccggggg tcgcctggtc acgcctggga cacccctgac actcacctgc 120acagcctctg gattctccct cagtagctac tccatgacct gggtccgcca ggctccaggg 180aaggggctgg aatatatcgg agtcattggt actagtggta gcacatacta cgcgacctgg 240gcgaaaggcc gattcaccat ctccagaacc tcgaccacgg tggctctgaa aatcaccagt 300ccgacaaccg aggacacggc cacctatttc tgtgtcagga gtctttcttc tattactttc 360ttg 36327639DNAOryctolagus cuniculus 276caggccagtc agagtgttta taacaacaaa aatttagcc 3927721DNAOryctolagus cuniculus 277tgggcatcca ctctggcatc t 2127833DNAOryctolagus cuniculus 278ctaggcgttt ttgatgatga tgctgataat gct 3327915DNAOryctolagus cuniculus 279agctactcca tgacc 1528048DNAOryctolagus cuniculus 280gtcattggta ctagtggtag cacatactac gcgacctggg cgaaaggc 4828124DNAOryctolagus cuniculus 281agtctttctt ctattacttt cttg 24282120PRTOryctolagus cuniculus 282Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Arg Cys Ala Phe Glu Leu Thr Gln Thr Pro Ala Ser 20 25 30Val Glu Ala Ala Val Gly Gly Thr Val Thr Ile Asn Cys Gln Ala Ser 35 40 45Gln Asn Ile Tyr Arg Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln 50 55 60Pro Pro Lys Phe Leu Ile Tyr Leu Ala Ser Thr Leu Ala Ser Gly Val65 70 75 80Pro Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr 85 90 95Ile Ser Asp Leu Glu Cys Ala Asp Ala Ala Thr Tyr Tyr Cys Gln Ser 100 105 110Tyr Tyr Ser Ser Asn Ser Val Ala 115 120283128PRTOryctolagus cuniculus 283Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Glu Gln Leu Val Glu Ser Gly Gly Asp Leu Val Gln 20 25 30Pro Glu Gly Ser Leu Thr Leu Thr Cys Thr Ala Ser Glu Leu Asp Phe 35 40 45Ser Ser Gly Tyr Trp Ile Cys Trp Val Arg Gln Val Pro Gly Lys Gly 50 55 60Leu Glu Trp Ile Gly Cys Ile Tyr Thr Gly Ser Ser Gly Ser Thr Phe65 70 75 80Tyr Ala Ser Trp Ala Lys Gly Arg Phe Thr Ile Ser Lys Thr Ser Ser 85 90 95Thr Thr Val Thr Leu Gln Met Thr Ser Leu Thr Ala Ala Asp Thr Ala 100 105 110Thr Tyr Phe Cys Ala Arg Gly Tyr Ser Gly Phe Gly Tyr Phe Lys Leu 115 120 12528411PRTOryctolagus cuniculus 284Gln Ala Ser Gln Asn Ile Tyr Arg Tyr Leu Ala1 5 102857PRTOryctolagus cuniculus 285Leu Ala Ser Thr Leu Ala Ser1 528610PRTOryctolagus cuniculus 286Gln Ser Tyr Tyr Ser Ser Asn Ser Val Ala1 5 102876PRTOryctolagus cuniculus 287Ser Gly Tyr Trp Ile Cys1 528818PRTOryctolagus cuniculus 288Cys Ile Tyr Thr Gly Ser Ser Gly Ser Thr Phe Tyr Ala Ser Trp Ala1 5 10 15Lys Gly28910PRTOryctolagus cuniculus 289Gly Tyr Ser Gly Phe Gly Tyr Phe Lys Leu1 5 10290360DNAOryctolagus cuniculus 290atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60agatgtgcat tcgaattgac ccagactcca gcctccgtgg aggcagctgt gggaggcaca 120gtcaccatca attgccaggc cagtcagaac atttatagat acttagcctg gtatcagcag 180aaaccagggc agcctcccaa gttcctgatc tatctggcat ctactctggc atctggggtc 240ccatcgcggt ttaaaggcag tggatctggg acagagttca ctctcaccat cagcgacctg 300gagtgtgccg atgctgccac ttactactgt caaagttatt atagtagtaa tagtgtcgct 360291384DNAOryctolagus cuniculus 291atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60gagcagctgg tggagtccgg gggagacctg gtccagcctg agggatccct gacactcacc 120tgcacagctt ctgagttaga cttcagtagc ggctactgga tatgctgggt ccgccaggtt 180ccagggaagg ggctggagtg gatcggatgc atttatactg gtagtagtgg tagcactttt 240tacgcgagtt gggcgaaagg ccgattcacc atctccaaaa cctcgtcgac cacggtgact 300ctgcaaatga ccagtctgac agccgcggac acggccacct atttctgtgc gagaggttat 360agtggctttg gttactttaa gttg 38429233DNAOryctolagus cuniculus 292caggccagtc agaacattta tagatactta gcc 3329321DNAOryctolagus cuniculus 293ctggcatcta ctctggcatc t 2129430DNAOryctolagus cuniculus 294caaagttatt atagtagtaa tagtgtcgct 3029518DNAOryctolagus cuniculus 295agcggctact ggatatgc 1829654DNAOryctolagus cuniculus 296tgcatttata ctggtagtag tggtagcact ttttacgcga gttgggcgaa aggc 5429730DNAOryctolagus cuniculus 297ggttatagtg gctttggtta ctttaagttg 30298122PRTOryctolagus cuniculus 298Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Arg Cys Ala Tyr Asp Met Thr Gln Thr Pro Ala Ser 20 25 30Val Glu Val Ala Val Gly Gly Thr Val Thr Ile Lys Cys Gln Ala Ser 35 40 45Glu Asp Ile Tyr Arg Leu Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln 50 55 60Pro Pro Lys Leu Leu Ile Tyr Asp Ser Ser Asp Leu Ala Ser Gly Val65 70 75 80Pro Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Ala 85 90 95Ile Ser Gly Val Gln Cys Asp Asp Ala Ala Thr Tyr Tyr Cys Gln Gln 100 105 110Ala Trp Ser Tyr Ser Asp Ile Asp Asn Ala 115 120299123PRTOryctolagus cuniculus 299Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Leu Ser 35 40 45Ser Tyr Tyr Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 50 55 60Trp Ile Gly Ile Ile Thr Thr Ser Gly Asn Thr Phe Tyr Ala Ser Trp65 70 75 80Ala Lys Gly Arg Leu Thr Ile Ser Arg Thr Ser Thr Thr Val Asp Leu 85 90

95Lys Ile Thr Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala 100 105 110Arg Thr Ser Asp Ile Phe Tyr Tyr Arg Asn Leu 115 12030011PRTOryctolagus cuniculus 300Gln Ala Ser Glu Asp Ile Tyr Arg Leu Leu Ala1 5 103017PRTOryctolagus cuniculus 301Asp Ser Ser Asp Leu Ala Ser1 530212PRTOryctolagus cuniculus 302Gln Gln Ala Trp Ser Tyr Ser Asp Ile Asp Asn Ala1 5 103035PRTOryctolagus cuniculus 303Ser Tyr Tyr Met Ser1 530416PRTOryctolagus cuniculus 304Ile Ile Thr Thr Ser Gly Asn Thr Phe Tyr Ala Ser Trp Ala Lys Gly1 5 10 1530510PRTOryctolagus cuniculus 305Thr Ser Asp Ile Phe Tyr Tyr Arg Asn Leu1 5 10306366DNAOryctolagus cuniculus 306atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60agatgtgcct atgatatgac ccagactcca gcctctgtgg aggtagctgt gggaggcaca 120gtcaccatca agtgccaggc cagtgaggac atttataggt tattggcctg gtatcaacag 180aaaccagggc agcctcccaa gctcctgatc tatgattcat ccgatctggc atctggggtc 240ccatcgcggt tcaaaggcag tggatctggg acagagttca ctctcgccat cagcggtgtg 300cagtgtgacg atgctgccac ttactactgt caacaggctt ggagttatag tgatattgat 360aatgct 366307369DNAOryctolagus cuniculus 307atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60tcggtggagg agtccggggg tcgcctggtc acgccgggga cacccctgac actcacctgc 120acagcctctg gattctccct cagtagctac tacatgagct gggtccgcca ggctccaggg 180aaggggctgg aatggatcgg aatcattact actagtggta atacatttta cgcgagctgg 240gcgaaaggcc ggctcaccat ctccagaacc tcgaccacgg tggatctgaa aatcaccagt 300ccgacaaccg aggacacggc cacctatttc tgtgccagaa cttctgatat tttttattat 360cgtaacttg 36930833DNAOryctolagus cuniculus 308caggccagtg aggacattta taggttattg gcc 3330921DNAOryctolagus cuniculus 309gattcatccg atctggcatc t 2131036DNAOryctolagus cuniculus 310caacaggctt ggagttatag tgatattgat aatgct 3631115DNAOryctolagus cuniculus 311agctactaca tgagc 1531248DNAOryctolagus cuniculus 312atcattacta ctagtggtaa tacattttac gcgagctggg cgaaaggc 4831330DNAOryctolagus cuniculus 313acttctgata ttttttatta tcgtaacttg 30314123PRTOryctolagus cuniculus 314Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Thr Phe Ala Ala Val Leu Thr Gln Thr Ala Ser Pro 20 25 30Val Ser Ala Ala Val Gly Ala Thr Val Thr Ile Asn Cys Gln Ser Ser 35 40 45Gln Ser Val Tyr Asn Asp Met Asp Leu Ala Trp Phe Gln Gln Lys Pro 50 55 60Gly Gln Pro Pro Lys Leu Leu Ile Tyr Ser Ala Ser Thr Leu Ala Ser65 70 75 80Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr 85 90 95Leu Thr Ile Ser Gly Val Gln Cys Asp Asp Ala Ala Thr Tyr Tyr Cys 100 105 110Leu Gly Ala Phe Asp Asp Asp Ala Asp Asn Thr 115 120315129PRTOryctolagus cuniculus 315Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Thr 35 40 45Arg His Ala Ile Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 50 55 60Trp Ile Gly Cys Ile Trp Ser Gly Gly Ser Thr Tyr Tyr Ala Thr Trp65 70 75 80Ala Lys Gly Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu 85 90 95Arg Ile Thr Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala 100 105 110Arg Val Ile Gly Asp Thr Ala Gly Tyr Ala Tyr Phe Thr Gly Leu Asp 115 120 125Leu31613PRTOryctolagus cuniculus 316Gln Ser Ser Gln Ser Val Tyr Asn Asp Met Asp Leu Ala1 5 103177PRTOryctolagus cuniculus 317Ser Ala Ser Thr Leu Ala Ser1 531811PRTOryctolagus cuniculus 318Leu Gly Ala Phe Asp Asp Asp Ala Asp Asn Thr1 5 103195PRTOryctolagus cuniculus 319Arg His Ala Ile Thr1 532016PRTOryctolagus cuniculus 320Cys Ile Trp Ser Gly Gly Ser Thr Tyr Tyr Ala Thr Trp Ala Lys Gly1 5 10 1532116PRTOryctolagus cuniculus 321Val Ile Gly Asp Thr Ala Gly Tyr Ala Tyr Phe Thr Gly Leu Asp Leu1 5 10 15322369DNAOryctolagus cuniculus 322atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60acgtttgcag ccgtgctgac ccagactgca tcacccgtgt ctgccgctgt gggagccaca 120gtcaccatca actgccagtc cagtcagagt gtttataatg acatggactt agcctggttt 180cagcagaaac cagggcagcc tcccaagctc ctgatctatt ctgcatccac tctggcatct 240ggggtcccat cgcggttcag cggcagtgga tctgggacag agttcactct caccatcagc 300ggcgtgcagt gtgacgatgc tgccacttac tactgtctag gcgcttttga tgatgatgct 360gataatact 369323387DNAOryctolagus cuniculus 323atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60tcggtggagg agtccggggg tcgcctggtc acgcctggga cacccctgac actcacctgc 120acagtctctg gattctccct cactaggcat gcaataacct gggtccgcca ggctccaggg 180aaggggctgg aatggatcgg atgcatttgg agtggtggta gcacatacta cgcgacctgg 240gcgaaaggcc gattcaccat ctccaaaacc tcgaccacgg tggatctcag aatcaccagt 300ccgacaaccg aggacacggc cacctacttc tgtgccagag tcattggcga tactgctggt 360tatgcttatt ttacggggct tgacttg 38732439DNAOryctolagus cuniculus 324cagtccagtc agagtgttta taatgacatg gacttagcc 3932521DNAOryctolagus cuniculus 325tctgcatcca ctctggcatc t 2132633DNAOryctolagus cuniculus 326ctaggcgctt ttgatgatga tgctgataat act 3332715DNAOryctolagus cuniculus 327aggcatgcaa taacc 1532848DNAOryctolagus cuniculus 328tgcatttgga gtggtggtag cacatactac gcgacctggg cgaaaggc 4832948DNAOryctolagus cuniculus 329gtcattggcg atactgctgg ttatgcttat tttacggggc ttgacttg 48330121PRTOryctolagus cuniculus 330Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Arg Cys Ala Tyr Asp Met Thr Gln Thr Pro Ala Ser 20 25 30Val Glu Val Ala Val Gly Gly Thr Val Thr Ile Lys Cys Gln Ala Ser 35 40 45Gln Ser Val Tyr Asn Trp Leu Ser Trp Tyr Gln Gln Lys Pro Gly Gln 50 55 60Pro Pro Lys Leu Leu Ile Tyr Thr Ala Ser Ser Leu Ala Ser Gly Val65 70 75 80Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr 85 90 95Ile Ser Gly Val Glu Cys Ala Asp Ala Ala Thr Tyr Tyr Cys Gln Gln 100 105 110Gly Tyr Thr Ser Asp Val Asp Asn Val 115 120331130PRTOryctolagus cuniculus 331Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Leu Glu Glu Ala Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu Thr Leu Thr Cys Thr Val Ser Gly Ile Asp Leu Ser 35 40 45Ser Tyr Ala Met Gly Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 50 55 60Tyr Ile Gly Ile Ile Ser Ser Ser Gly Ser Thr Tyr Tyr Ala Thr Trp65 70 75 80Ala Lys Gly Arg Phe Thr Ile Ser Gln Ala Ser Ser Thr Thr Val Asp 85 90 95Leu Lys Ile Thr Ser Pro Thr Thr Glu Asp Ser Ala Thr Tyr Phe Cys 100 105 110Ala Arg Gly Gly Ala Gly Ser Gly Gly Val Trp Leu Leu Asp Gly Phe 115 120 125Asp Pro 13033211PRTOryctolagus cuniculus 332Gln Ala Ser Gln Ser Val Tyr Asn Trp Leu Ser1 5 103337PRTOryctolagus cuniculus 333Thr Ala Ser Ser Leu Ala Ser1 533411PRTOryctolagus cuniculus 334Gln Gln Gly Tyr Thr Ser Asp Val Asp Asn Val1 5 103355PRTOryctolagus cuniculus 335Ser Tyr Ala Met Gly1 533616PRTOryctolagus cuniculus 336Ile Ile Ser Ser Ser Gly Ser Thr Tyr Tyr Ala Thr Trp Ala Lys Gly1 5 10 1533716PRTOryctolagus cuniculus 337Gly Gly Ala Gly Ser Gly Gly Val Trp Leu Leu Asp Gly Phe Asp Pro1 5 10 15338363DNAOryctolagus cuniculus 338atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60agatgtgcct atgatatgac ccagactcca gcctctgtgg aggtagctgt gggaggcaca 120gtcaccatca agtgccaggc cagtcagagt gtttataatt ggttatcctg gtatcagcag 180aaaccagggc agcctcccaa gctcctgatc tatactgcat ccagtctggc atctggggtc 240ccatcgcggt tcagtggcag tggatctggg acagagttca ctctcaccat cagcggcgtg 300gagtgtgccg atgctgccac ttactactgt caacagggtt atactagtga tgttgataat 360gtt 363339390DNAOryctolagus cuniculus 339atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60tcgctggagg aggccggggg tcgcctggtc acgcctggga cacccctgac actcacctgc 120acagtctctg gaatcgacct cagtagctat gcaatgggct gggtccgcca ggctccaggg 180aaggggctgg aatacatcgg aatcattagt agtagtggta gcacatacta cgcgacctgg 240gcgaaaggcc gattcaccat ctcacaagcc tcgtcgacca cggtggatct gaaaattacc 300agtccgacaa ccgaggactc ggccacatat ttctgtgcca gagggggtgc tggtagtggt 360ggtgtttggc tgcttgatgg ttttgatccc 39034033DNAOryctolagus cuniculus 340caggccagtc agagtgttta taattggtta tcc 3334121DNAOryctolagus cuniculus 341actgcatcca gtctggcatc t 2134233DNAOryctolagus cuniculus 342caacagggtt atactagtga tgttgataat gtt 3334315DNAOryctolagus cuniculus 343agctatgcaa tgggc 1534448DNAOryctolagus cuniculus 344atcattagta gtagtggtag cacatactac gcgacctggg cgaaaggc 4834548DNAOryctolagus cuniculus 345gggggtgctg gtagtggtgg tgtttggctg cttgatggtt ttgatccc 48346123PRTOryctolagus cuniculus 346Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Lys Cys Ala Asp Val Val Met Thr Gln Thr Pro Ala 20 25 30Ser Val Ser Ala Ala Val Gly Gly Thr Val Thr Ile Asn Cys Gln Ala 35 40 45Ser Glu Asn Ile Tyr Asn Trp Leu Ala Trp Tyr Gln Gln Lys Pro Gly 50 55 60Gln Pro Pro Lys Leu Leu Ile Tyr Thr Val Gly Asp Leu Ala Ser Gly65 70 75 80Val Ser Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu 85 90 95Thr Ile Ser Asp Leu Glu Cys Ala Asp Ala Ala Thr Tyr Tyr Cys Gln 100 105 110Gln Gly Tyr Ser Ser Ser Tyr Val Asp Asn Val 115 120347130PRTOryctolagus cuniculus 347Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Glu Gln Leu Lys Glu Ser Gly Gly Arg Leu Val Thr 20 25 30Pro Gly Thr Pro Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu 35 40 45Asn Asp Tyr Ala Val Gly Trp Phe Arg Gln Ala Pro Gly Lys Gly Leu 50 55 60Glu Trp Ile Gly Tyr Ile Arg Ser Ser Gly Thr Thr Ala Tyr Ala Thr65 70 75 80Trp Ala Lys Gly Arg Phe Thr Ile Ser Ala Thr Ser Thr Thr Val Asp 85 90 95Leu Lys Ile Thr Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys 100 105 110Ala Arg Gly Gly Ala Gly Ser Ser Gly Val Trp Ile Leu Asp Gly Phe 115 120 125Ala Pro 13034811PRTOryctolagus cuniculus 348Gln Ala Ser Glu Asn Ile Tyr Asn Trp Leu Ala1 5 103497PRTOryctolagus cuniculus 349Thr Val Gly Asp Leu Ala Ser1 535012PRTOryctolagus cuniculus 350Gln Gln Gly Tyr Ser Ser Ser Tyr Val Asp Asn Val1 5 103515PRTOryctolagus cuniculus 351Asp Tyr Ala Val Gly1 535216PRTOryctolagus cuniculus 352Tyr Ile Arg Ser Ser Gly Thr Thr Ala Tyr Ala Thr Trp Ala Lys Gly1 5 10 1535316PRTOryctolagus cuniculus 353Gly Gly Ala Gly Ser Ser Gly Val Trp Ile Leu Asp Gly Phe Ala Pro1 5 10 15354369DNAOryctolagus cuniculus 354atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60aaatgtgccg atgttgtgat gacccagact ccagcctccg tgtctgcagc tgtgggaggc 120acagtcacca tcaattgcca ggccagtgag aacatttata attggttagc ctggtatcag 180cagaaaccag ggcagcctcc caagctcctg atctatactg taggcgatct ggcatctggg 240gtctcatcgc ggttcaaagg cagtggatct gggacagagt tcactctcac catcagcgac 300ctggagtgtg ccgatgctgc cacttactat tgtcaacagg gttatagtag tagttatgtt 360gataatgtt 369355390DNAOryctolagus cuniculus 355atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60gagcagctga aggagtccgg gggtcgcctg gtcacgcctg ggacacccct gacactcacc 120tgcacagtct ctggattctc cctcaatgac tatgcagtgg gctggttccg ccaggctcca 180gggaaggggc tggaatggat cggatacatt cgtagtagtg gtaccacagc ctacgcgacc 240tgggcgaaag gccgattcac catctccgct acctcgacca cggtggatct gaaaatcacc 300agtccgacaa ccgaggacac ggccacctat ttctgtgcca gagggggtgc tggtagtagt 360ggtgtgtgga tccttgatgg ttttgctccc 39035633DNAOryctolagus cuniculus 356caggccagtg agaacattta taattggtta gcc 3335721DNAOryctolagus cuniculus 357actgtaggcg atctggcatc t 2135836DNAOryctolagus cuniculus 358caacagggtt atagtagtag ttatgttgat aatgtt 3635915DNAOryctolagus cuniculus 359gactatgcag tgggc 1536048DNAOryctolagus cuniculus 360tacattcgta gtagtggtac cacagcctac gcgacctggg cgaaaggc 4836148DNAOryctolagus cuniculus 361gggggtgctg gtagtagtgg tgtgtggatc cttgatggtt ttgctccc 48362121PRTOryctolagus cuniculus 362Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Thr Phe Ala Gln Val Leu Thr Gln Thr Pro Ser Ser 20 25 30Val Ser Ala Ala Val Gly Gly Thr Val Thr Ile Asn Cys Gln Ala Ser 35 40 45Gln Ser Val Tyr Gln Asn Asn Tyr Leu Ser Trp Phe Gln Gln Lys Pro 50 55 60Gly Gln Pro Pro Lys Leu Leu Ile Tyr Gly Ala Ala Thr Leu Ala Ser65 70 75 80Gly Val Pro Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Gln Phe Thr 85 90 95Leu Thr Ile Ser Asp Leu Glu Cys Asp Asp Ala Ala Thr Tyr Tyr Cys 100 105 110Ala Gly Ala Tyr Arg Asp Val Asp Ser 115 120363130PRTOryctolagus cuniculus 363Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Leu Glu Glu Ser Gly Gly Asp Leu Val Lys Pro 20 25 30Gly Ala Ser Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Phe Thr 35 40 45Ser Thr Tyr Tyr Ile Tyr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 50 55 60Glu Trp Ile Ala Cys Ile Asp Ala Gly Ser Ser Gly Ser Thr Tyr Tyr65 70 75 80Ala Thr Trp Val Asn Gly Arg Phe Thr Ile Ser Lys Thr Ser Ser Thr 85 90 95Thr Val Thr Leu Gln Met Thr Ser Leu Thr Ala Ala Asp Thr Ala Thr 100 105 110Tyr Phe Cys Ala Lys Trp Asp Tyr Gly Gly Asn Val Gly Trp Gly Tyr 115 120 125Asp Leu 13036413PRTOryctolagus cuniculus 364Gln Ala Ser Gln Ser Val Tyr Gln Asn Asn Tyr Leu Ser1 5 103657PRTOryctolagus cuniculus 365Gly Ala Ala Thr Leu Ala Ser1 53669PRTOryctolagus cuniculus 366Ala Gly Ala Tyr Arg Asp Val Asp Ser1 53676PRTOryctolagus cuniculus 367Ser Thr Tyr Tyr Ile Tyr1 536818PRTOryctolagus cuniculus 368Cys Ile Asp Ala Gly Ser Ser Gly Ser Thr Tyr Tyr Ala Thr Trp Val1 5 10 15Asn Gly36913PRTOryctolagus cuniculus 369Trp Asp Tyr Gly Gly Asn Val Gly Trp Gly Tyr Asp Leu1

5 10370363DNAOryctolagus cuniculus 370atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60acatttgctc aagtgctgac ccagactcca tcctccgtgt ctgcagctgt gggaggcaca 120gtcaccatca attgccaggc cagtcagagt gtttatcaga acaactactt atcctggttt 180cagcagaaac cagggcagcc tcccaagctc ctgatctatg gtgcggccac tctggcatct 240ggggtcccat cgcggttcaa aggcagtgga tctgggacac agttcactct caccatcagc 300gacctggagt gtgacgatgc tgccacttac tactgtgcag gcgcttatag ggatgtggat 360tct 363371390DNAOryctolagus cuniculus 371atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60tcgttggagg agtccggggg agacctggtc aagcctgggg catccctgac actcacctgc 120acagcctctg gattctcctt tactagtacc tactacatct actgggtccg ccaggctcca 180gggaaggggc tggagtggat cgcatgtatt gatgctggta gtagtggtag cacttactac 240gcgacctggg tgaatggccg attcaccatc tccaaaacct cgtcgaccac ggtgactctg 300caaatgacca gtctgacagc cgcggacacg gccacctatt tctgtgcgaa atgggattat 360ggtggtaatg ttggttgggg ttatgacttg 39037239DNAOryctolagus cuniculus 372caggccagtc agagtgttta tcagaacaac tacttatcc 3937321DNAOryctolagus cuniculus 373ggtgcggcca ctctggcatc t 2137427DNAOryctolagus cuniculus 374gcaggcgctt atagggatgt ggattct 2737518DNAOryctolagus cuniculus 375agtacctact acatctac 1837654DNAOryctolagus cuniculus 376tgtattgatg ctggtagtag tggtagcact tactacgcga cctgggtgaa tggc 5437739DNAOryctolagus cuniculus 377tgggattatg gtggtaatgt tggttggggt tatgacttg 39378120PRTOryctolagus cuniculus 378Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Arg Cys Ala Phe Glu Leu Thr Gln Thr Pro Ser Ser 20 25 30Val Glu Ala Ala Val Gly Gly Thr Val Thr Ile Lys Cys Gln Ala Ser 35 40 45Gln Ser Ile Ser Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln 50 55 60Pro Pro Lys Phe Leu Ile Tyr Arg Ala Ser Thr Leu Ala Ser Gly Val65 70 75 80Pro Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr 85 90 95Ile Ser Asp Leu Glu Cys Ala Asp Ala Ala Thr Tyr Tyr Cys Gln Ser 100 105 110Tyr Tyr Asp Ser Val Ser Asn Pro 115 120379127PRTOryctolagus cuniculus 379Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Leu Glu Glu Ser Gly Gly Asp Leu Val Lys Pro 20 25 30Glu Gly Ser Leu Thr Leu Thr Cys Lys Ala Ser Gly Leu Asp Leu Gly 35 40 45Thr Tyr Trp Phe Met Cys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 50 55 60Glu Trp Ile Ala Cys Ile Tyr Thr Gly Ser Ser Gly Ser Thr Phe Tyr65 70 75 80Ala Ser Trp Val Asn Gly Arg Phe Thr Ile Ser Lys Thr Ser Ser Thr 85 90 95Thr Val Thr Leu Gln Met Thr Ser Leu Thr Ala Ala Asp Thr Ala Thr 100 105 110Tyr Phe Cys Ala Arg Gly Tyr Ser Gly Tyr Gly Tyr Phe Lys Leu 115 120 12538011PRTOryctolagus cuniculus 380Gln Ala Ser Gln Ser Ile Ser Ser Tyr Leu Ala1 5 103817PRTOryctolagus cuniculus 381Arg Ala Ser Thr Leu Ala Ser1 538210PRTOryctolagus cuniculus 382Gln Ser Tyr Tyr Asp Ser Val Ser Asn Pro1 5 103836PRTOryctolagus cuniculus 383Thr Tyr Trp Phe Met Cys1 538418PRTOryctolagus cuniculus 384Cys Ile Tyr Thr Gly Ser Ser Gly Ser Thr Phe Tyr Ala Ser Trp Val1 5 10 15Asn Gly38510PRTOryctolagus cuniculus 385Gly Tyr Ser Gly Tyr Gly Tyr Phe Lys Leu1 5 10386360DNAOryctolagus cuniculus 386atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60agatgtgcat tcgaattgac ccagactcca tcctccgtgg aggcagctgt gggaggcaca 120gtcaccatca agtgccaggc cagtcagagc attagtagtt acttagcctg gtatcagcag 180aaaccagggc agcctcccaa gttcctgatc tacagggcgt ccactctggc atctggggtc 240ccatcgcgat tcaaaggcag tggatctggg acagagttca ctctcaccat cagcgacctg 300gagtgtgccg atgctgccac ttactactgt caaagctatt atgatagtgt ttcaaatcct 360387381DNAOryctolagus cuniculus 387atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60tcgttggagg agtccggggg agacctggtc aagcctgagg gatccctgac actcacctgc 120aaagcctctg gactcgacct cggtacctac tggttcatgt gctgggtccg ccaggctcca 180gggaaggggc tggagtggat cgcttgtatt tatactggta gtagtggttc cactttctac 240gcgagctggg tgaatggccg attcaccatc tccaaaacct cgtcgaccac ggtgactctg 300caaatgacca gtctgacagc cgcggacacg gccacttatt tttgtgcgag aggttatagt 360ggttatggtt attttaagtt g 38138833DNAOryctolagus cuniculus 388caggccagtc agagcattag tagttactta gcc 3338921DNAOryctolagus cuniculus 389agggcgtcca ctctggcatc t 2139030DNAOryctolagus cuniculus 390caaagctatt atgatagtgt ttcaaatcct 3039118DNAOryctolagus cuniculus 391acctactggt tcatgtgc 1839254DNAOryctolagus cuniculus 392tgtatttata ctggtagtag tggttccact ttctacgcga gctgggtgaa tggc 5439330DNAOryctolagus cuniculus 393ggttatagtg gttatggtta ttttaagttg 30394124PRTOryctolagus cuniculus 394Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Val Thr Phe Ala Ile Glu Met Thr Gln Ser Pro Phe Ser 20 25 30Val Ser Ala Ala Val Gly Gly Thr Val Ser Ile Ser Cys Gln Ala Ser 35 40 45Gln Ser Val Tyr Lys Asn Asn Gln Leu Ser Trp Tyr Gln Gln Lys Ser 50 55 60Gly Gln Pro Pro Lys Leu Leu Ile Tyr Gly Ala Ser Ala Leu Ala Ser65 70 75 80Gly Val Pro Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Glu Phe Thr 85 90 95Leu Thr Ile Ser Asp Val Gln Cys Asp Asp Ala Ala Thr Tyr Tyr Cys 100 105 110Ala Gly Ala Ile Thr Gly Ser Ile Asp Thr Asp Gly 115 120395130PRTOryctolagus cuniculus 395Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Leu Glu Glu Ser Gly Gly Asp Leu Val Lys Pro 20 25 30Gly Ala Ser Leu Thr Leu Thr Cys Thr Thr Ser Gly Phe Ser Phe Ser 35 40 45Ser Ser Tyr Phe Ile Cys Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 50 55 60Glu Trp Ile Ala Cys Ile Tyr Gly Gly Asp Gly Ser Thr Tyr Tyr Ala65 70 75 80Ser Trp Ala Lys Gly Arg Phe Thr Ile Ser Lys Thr Ser Ser Thr Thr 85 90 95Val Thr Leu Gln Met Thr Ser Leu Thr Ala Ala Asp Thr Ala Thr Tyr 100 105 110Phe Cys Ala Arg Glu Trp Ala Tyr Ser Gln Gly Tyr Phe Gly Ala Phe 115 120 125Asp Leu 13039613PRTOryctolagus cuniculus 396Gln Ala Ser Gln Ser Val Tyr Lys Asn Asn Gln Leu Ser1 5 103977PRTOryctolagus cuniculus 397Gly Ala Ser Ala Leu Ala Ser1 539812PRTOryctolagus cuniculus 398Ala Gly Ala Ile Thr Gly Ser Ile Asp Thr Asp Gly1 5 103996PRTOryctolagus cuniculus 399Ser Ser Tyr Phe Ile Cys1 540017PRTOryctolagus cuniculus 400Cys Ile Tyr Gly Gly Asp Gly Ser Thr Tyr Tyr Ala Ser Trp Ala Lys1 5 10 15Gly40114PRTOryctolagus cuniculus 401Glu Trp Ala Tyr Ser Gln Gly Tyr Phe Gly Ala Phe Asp Leu1 5 10402372DNAOryctolagus cuniculus 402atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgtc 60acatttgcca tcgaaatgac ccagagtcca ttctccgtgt ctgcagctgt gggaggcaca 120gtcagcatca gttgccaggc cagtcagagt gtttataaga acaaccaatt atcctggtat 180cagcagaaat cagggcagcc tcccaagctc ctgatctatg gtgcatcggc tctggcatct 240ggggtcccat cgcggttcaa aggcagtgga tctgggacag agttcactct caccatcagc 300gacgtgcagt gtgacgatgc tgccacttac tactgtgcag gcgctattac tggtagtatt 360gatacggatg gt 372403390DNAOryctolagus cuniculus 403atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60tcgttggagg agtccggggg agacctggtc aagcctgggg catccctgac actcacctgc 120acaacttctg gattctcctt cagtagcagc tacttcattt gctgggtccg ccaggctcca 180gggaaggggc tggagtggat cgcatgcatt tatggtggtg atggcagcac atactacgcg 240agctgggcga aaggccgatt caccatctcc aaaacctcgt cgaccacggt gacgctgcaa 300atgaccagtc tgacagccgc ggacacggcc acctatttct gtgcgagaga atgggcatat 360agtcaaggtt attttggtgc ttttgatctc 39040439DNAOryctolagus cuniculus 404caggccagtc agagtgttta taagaacaac caattatcc 3940521DNAOryctolagus cuniculus 405ggtgcatcgg ctctggcatc t 2140636DNAOryctolagus cuniculus 406gcaggcgcta ttactggtag tattgatacg gatggt 3640718DNAOryctolagus cuniculus 407agcagctact tcatttgc 1840851DNAOryctolagus cuniculus 408tgcatttatg gtggtgatgg cagcacatac tacgcgagct gggcgaaagg c 5140942DNAOryctolagus cuniculus 409gaatgggcat atagtcaagg ttattttggt gcttttgatc tc 42410124PRTOryctolagus cuniculus 410Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Arg Cys Asp Val Val Met Thr Gln Thr Pro Ala Ser 20 25 30Val Glu Ala Ala Val Gly Gly Thr Val Thr Ile Lys Cys Gln Ala Ser 35 40 45Glu Asp Ile Ser Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln 50 55 60Pro Pro Lys Leu Leu Ile Tyr Ala Ala Ser Asn Leu Glu Ser Gly Val65 70 75 80Ser Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Glu Tyr Thr Leu Thr 85 90 95Ile Ser Asp Leu Glu Cys Ala Asp Ala Ala Thr Tyr Tyr Cys Gln Cys 100 105 110Thr Tyr Gly Thr Ile Ser Ile Ser Asp Gly Asn Ala 115 120411124PRTOryctolagus cuniculus 411Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Ser 35 40 45Ser Tyr Phe Met Thr Trp Val Arg Gln Ala Pro Gly Glu Gly Leu Glu 50 55 60Tyr Ile Gly Phe Ile Asn Pro Gly Gly Ser Ala Tyr Tyr Ala Ser Trp65 70 75 80Val Lys Gly Arg Phe Thr Ile Ser Lys Ser Ser Thr Thr Val Asp Leu 85 90 95Lys Ile Thr Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala 100 105 110Arg Val Leu Ile Val Ser Tyr Gly Ala Phe Thr Ile 115 12041211PRTOryctolagus cuniculus 412Gln Ala Ser Glu Asp Ile Ser Ser Tyr Leu Ala1 5 104137PRTOryctolagus cuniculus 413Ala Ala Ser Asn Leu Glu Ser1 541414PRTOryctolagus cuniculus 414Gln Cys Thr Tyr Gly Thr Ile Ser Ile Ser Asp Gly Asn Ala1 5 104155PRTOryctolagus cuniculus 415Ser Tyr Phe Met Thr1 541616PRTOryctolagus cuniculus 416Phe Ile Asn Pro Gly Gly Ser Ala Tyr Tyr Ala Ser Trp Val Lys Gly1 5 10 1541711PRTOryctolagus cuniculus 417Val Leu Ile Val Ser Tyr Gly Ala Phe Thr Ile1 5 10418372DNAOryctolagus cuniculus 418atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60agatgtgatg ttgtgatgac ccagactcca gcctccgtgg aggcagctgt gggaggcaca 120gtcaccatca agtgccaggc cagtgaggat attagtagct acttagcctg gtatcagcag 180aaaccagggc agcctcccaa gctcctgatc tatgctgcat ccaatctgga atctggggtc 240tcatcgcgat tcaaaggcag tggatctggg acagagtaca ctctcaccat cagcgacctg 300gagtgtgccg atgctgccac ctattactgt caatgtactt atggtactat ttctattagt 360gatggtaatg ct 372419372DNAOryctolagus cuniculus 419atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccaatgtcag 60tcggtggagg agtccggggg tcgcctggtc acgcctggga cacccctgac actcacctgc 120acagtctctg gattctccct cagtagctac ttcatgacct gggtccgcca ggctccaggg 180gaggggctgg aatacatcgg attcattaat cctggtggta gcgcttacta cgcgagctgg 240gtgaaaggcc gattcaccat ctccaagtcc tcgaccacgg tagatctgaa aatcaccagt 300ccgacaaccg aggacacggc cacctatttc tgtgccaggg ttctgattgt ttcttatgga 360gcctttacca tc 37242033DNAOryctolagus cuniculus 420caggccagtg aggatattag tagctactta gcc 3342121DNAOryctolagus cuniculus 421gctgcatcca atctggaatc t 2142242DNAOryctolagus cuniculus 422caatgtactt atggtactat ttctattagt gatggtaatg ct 4242315DNAOryctolagus cuniculus 423agctacttca tgacc 1542448DNAOryctolagus cuniculus 424ttcattaatc ctggtggtag cgcttactac gcgagctggg tgaaaggc 4842533DNAOryctolagus cuniculus 425gttctgattg tttcttatgg agcctttacc atc 33426124PRTOryctolagus cuniculus 426Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Arg Cys Asp Val Val Met Thr Gln Thr Pro Ala Ser 20 25 30Val Ser Ala Ala Val Gly Gly Thr Val Thr Ile Lys Cys Gln Ala Ser 35 40 45Glu Asp Ile Glu Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln 50 55 60Pro Pro Lys Leu Leu Ile Tyr Gly Ala Ser Asn Leu Glu Ser Gly Val65 70 75 80Ser Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr 85 90 95Ile Ser Asp Leu Glu Cys Ala Asp Ala Ala Thr Tyr Tyr Cys Gln Cys 100 105 110Thr Tyr Gly Ile Ile Ser Ile Ser Asp Gly Asn Ala 115 120427124PRTOryctolagus cuniculus 427Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Ser 35 40 45Ser Tyr Phe Met Thr Trp Val Arg Gln Ala Pro Gly Glu Gly Leu Glu 50 55 60Tyr Ile Gly Phe Met Asn Thr Gly Asp Asn Ala Tyr Tyr Ala Ser Trp65 70 75 80Ala Lys Gly Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu 85 90 95Lys Ile Thr Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala 100 105 110Arg Val Leu Val Val Ala Tyr Gly Ala Phe Asn Ile 115 12042811PRTOryctolagus cuniculus 428Gln Ala Ser Glu Asp Ile Glu Ser Tyr Leu Ala1 5 104297PRTOryctolagus cuniculus 429Gly Ala Ser Asn Leu Glu Ser1 543014PRTOryctolagus cuniculus 430Gln Cys Thr Tyr Gly Ile Ile Ser Ile Ser Asp Gly Asn Ala1 5 104315PRTOryctolagus cuniculus 431Ser Tyr Phe Met Thr1 543216PRTOryctolagus cuniculus 432Phe Met Asn Thr Gly Asp Asn Ala Tyr Tyr Ala Ser Trp Ala Lys Gly1 5 10 1543311PRTOryctolagus cuniculus 433Val Leu Val Val Ala Tyr Gly Ala Phe Asn Ile1 5 10434372DNAOryctolagus cuniculus 434atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60agatgtgatg ttgtgatgac ccagactcca gcctccgtgt ctgcagctgt gggaggcaca 120gtcaccatca agtgccaggc cagtgaggac attgaaagct atctagcctg gtatcagcag 180aaaccagggc agcctcccaa gctcctgatc tatggtgcat ccaatctgga atctggggtc 240tcatcgcggt tcaaaggcag tggatctggg acagagttca ctctcaccat cagcgacctg 300gagtgtgccg atgctgccac ttactattgt caatgcactt atggtattat tagtattagt 360gatggtaatg ct 372435372DNAOryctolagus cuniculus 435atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60tcggtggagg agtccggggg tcgcctggtc acgcctggga cacccctgac actcacctgc 120acagtgtctg gattctccct cagtagctac ttcatgacct gggtccgcca ggctccaggg 180gaggggctgg aatacatcgg attcatgaat actggtgata acgcatacta cgcgagctgg 240gcgaaaggcc gattcaccat ctccaaaacc tcgaccacgg tggatctgaa aatcaccagt 300ccgacaaccg aggacacggc cacctatttc tgtgccaggg ttcttgttgt tgcttatgga 360gcctttaaca tc

37243633DNAOryctolagus cuniculus 436caggccagtg aggacattga aagctatcta gcc 3343721DNAOryctolagus cuniculus 437ggtgcatcca atctggaatc t 2143842DNAOryctolagus cuniculus 438caatgcactt atggtattat tagtattagt gatggtaatg ct 4243915DNAOryctolagus cuniculus 439agctacttca tgacc 1544048DNAOryctolagus cuniculus 440ttcatgaata ctggtgataa cgcatactac gcgagctggg cgaaaggc 4844133DNAOryctolagus cuniculus 441gttcttgttg ttgcttatgg agcctttaac atc 33442124PRTOryctolagus cuniculus 442Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Thr Phe Ala Ala Val Leu Thr Gln Thr Pro Ser Pro 20 25 30Val Ser Glu Pro Val Gly Gly Thr Val Ser Ile Ser Cys Gln Ser Ser 35 40 45Lys Ser Val Met Asn Asn Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro 50 55 60Gly Gln Pro Pro Lys Leu Leu Ile Tyr Gly Ala Ser Asn Leu Ala Ser65 70 75 80Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Gln Phe Thr 85 90 95Leu Thr Ile Ser Asp Val Gln Cys Asp Asp Ala Ala Thr Tyr Tyr Cys 100 105 110Gln Gly Gly Tyr Thr Gly Tyr Ser Asp His Gly Thr 115 120443127PRTOryctolagus cuniculus 443Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Lys Pro 20 25 30Asp Glu Thr Leu Thr Leu Thr Cys Thr Val Ser Gly Ile Asp Leu Ser 35 40 45Ser Tyr Pro Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 50 55 60Trp Ile Gly Phe Ile Asn Thr Gly Gly Thr Ile Val Tyr Ala Ser Trp65 70 75 80Ala Lys Gly Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu 85 90 95Lys Met Thr Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala 100 105 110Arg Gly Ser Tyr Val Ser Ser Gly Tyr Ala Tyr Tyr Phe Asn Val 115 120 12544413PRTOryctolagus cuniculus 444Gln Ser Ser Lys Ser Val Met Asn Asn Asn Tyr Leu Ala1 5 104457PRTOryctolagus cuniculus 445Gly Ala Ser Asn Leu Ala Ser1 544612PRTOryctolagus cuniculus 446Gln Gly Gly Tyr Thr Gly Tyr Ser Asp His Gly Thr1 5 104475PRTOryctolagus cuniculus 447Ser Tyr Pro Met Asn1 544816PRTOryctolagus cuniculus 448Phe Ile Asn Thr Gly Gly Thr Ile Val Tyr Ala Ser Trp Ala Lys Gly1 5 10 1544914PRTOryctolagus cuniculus 449Gly Ser Tyr Val Ser Ser Gly Tyr Ala Tyr Tyr Phe Asn Val1 5 10450372DNAOryctolagus cuniculus 450atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60acatttgccg ccgtgctgac ccagactcca tctcccgtgt ctgaacctgt gggaggcaca 120gtcagcatca gttgccagtc cagtaagagt gttatgaata acaactactt agcctggtat 180cagcagaaac cagggcagcc tcccaagctc ctgatctatg gtgcatccaa tctggcatct 240ggggtcccat cacggttcag cggcagtgga tctgggacac agttcactct caccatcagc 300gacgtgcagt gtgacgatgc tgccacttac tactgtcaag gcggttatac tggttatagt 360gatcatggga ct 372451381DNAOryctolagus cuniculus 451atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60tcggtggagg agtccggggg tcgcctggtc aagcctgacg aaaccctgac actcacctgc 120acagtctctg gaatcgacct cagtagctat ccaatgaact gggtccgcca ggctccaggg 180aaggggctgg aatggatcgg attcattaat actggtggta ccatagtcta cgcgagctgg 240gcaaaaggcc gattcaccat ctccaaaacc tcgaccacgg tggatctgaa aatgaccagt 300ccgacaaccg aggacacggc cacctatttc tgtgccagag gcagttatgt ttcatctggt 360tatgcctact attttaatgt c 38145239DNAOryctolagus cuniculus 452cagtccagta agagtgttat gaataacaac tacttagcc 3945321DNAOryctolagus cuniculus 453ggtgcatcca atctggcatc t 2145436DNAOryctolagus cuniculus 454caaggcggtt atactggtta tagtgatcat gggact 3645515DNAOryctolagus cuniculus 455agctatccaa tgaac 1545648DNAOryctolagus cuniculus 456ttcattaata ctggtggtac catagtctac gcgagctggg caaaaggc 4845742DNAOryctolagus cuniculus 457ggcagttatg tttcatctgg ttatgcctac tattttaatg tc 42458121PRTOryctolagus cuniculus 458Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Thr Phe Ala Ala Val Leu Thr Gln Thr Pro Ser Pro 20 25 30Val Ser Ala Ala Val Gly Gly Thr Val Ser Ile Ser Cys Gln Ser Ser 35 40 45Gln Ser Val Tyr Asn Asn Asn Trp Leu Ser Trp Phe Gln Gln Lys Pro 50 55 60Gly Gln Pro Pro Lys Leu Leu Ile Tyr Lys Ala Ser Thr Leu Ala Ser65 70 75 80Gly Val Pro Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Gln Phe Thr 85 90 95Leu Thr Ile Ser Asp Val Gln Cys Asp Asp Val Ala Thr Tyr Tyr Cys 100 105 110Ala Gly Gly Tyr Leu Asp Ser Val Ile 115 120459126PRTOryctolagus cuniculus 459Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Ser 35 40 45Thr Tyr Ser Ile Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 50 55 60Trp Ile Gly Ile Ile Ala Asn Ser Gly Thr Thr Phe Tyr Ala Asn Trp65 70 75 80Ala Lys Gly Arg Phe Thr Val Ser Lys Thr Ser Thr Thr Val Asp Leu 85 90 95Lys Ile Thr Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala 100 105 110Arg Glu Ser Gly Met Tyr Asn Glu Tyr Gly Lys Phe Asn Ile 115 120 12546013PRTOryctolagus cuniculus 460Gln Ser Ser Gln Ser Val Tyr Asn Asn Asn Trp Leu Ser1 5 104617PRTOryctolagus cuniculus 461Lys Ala Ser Thr Leu Ala Ser1 54629PRTOryctolagus cuniculus 462Ala Gly Gly Tyr Leu Asp Ser Val Ile1 54635PRTOryctolagus cuniculus 463Thr Tyr Ser Ile Asn1 546416PRTOryctolagus cuniculus 464Ile Ile Ala Asn Ser Gly Thr Thr Phe Tyr Ala Asn Trp Ala Lys Gly1 5 10 1546513PRTOryctolagus cuniculus 465Glu Ser Gly Met Tyr Asn Glu Tyr Gly Lys Phe Asn Ile1 5 10466363DNAOryctolagus cuniculus 466atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60acatttgccg ccgtgctgac ccagactcca tctcccgtgt ctgcagctgt gggaggcaca 120gtcagcatca gttgccagtc cagtcagagt gtttataata acaactggtt atcctggttt 180cagcagaaac cagggcagcc tcccaagctc ctgatctaca aggcatccac tctggcatct 240ggggtcccat cgcggttcaa aggcagtgga tctgggacac agttcactct caccatcagc 300gacgtgcagt gtgacgatgt tgccacttac tactgtgcgg gcggttatct tgatagtgtt 360att 363467378DNAOryctolagus cuniculus 467atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60tcggtggagg agtccggggg tcgcctggtc acgcctggga cacccctgac actcacctgc 120acagtctctg gattctccct cagtacctat tcaataaact gggtccgcca ggctccaggg 180aagggcctgg aatggatcgg aatcattgct aatagtggta ccacattcta cgcgaactgg 240gcgaaaggcc gattcaccgt ctccaaaacc tcgaccacgg tggatctgaa aatcaccagt 300ccgacaaccg aggacacggc cacctatttc tgtgccagag agagtggaat gtacaatgaa 360tatggtaaat ttaacatc 37846839DNAOryctolagus cuniculus 468cagtccagtc agagtgttta taataacaac tggttatcc 3946921DNAOryctolagus cuniculus 469aaggcatcca ctctggcatc t 2147027DNAOryctolagus cuniculus 470gcgggcggtt atcttgatag tgttatt 2747115DNAOryctolagus cuniculus 471acctattcaa taaac 1547248DNAOryctolagus cuniculus 472atcattgcta atagtggtac cacattctac gcgaactggg cgaaaggc 4847339DNAOryctolagus cuniculus 473gagagtggaa tgtacaatga atatggtaaa tttaacatc 39474122PRTOryctolagus cuniculus 474Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Arg Cys Ala Ser Asp Met Thr Gln Thr Pro Ser Ser 20 25 30Val Ser Ala Ala Val Gly Gly Thr Val Thr Ile Asn Cys Gln Ala Ser 35 40 45Glu Asn Ile Tyr Ser Phe Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln 50 55 60Pro Pro Lys Leu Leu Ile Phe Lys Ala Ser Thr Leu Ala Ser Gly Val65 70 75 80Ser Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Gln Phe Thr Leu Thr 85 90 95Ile Ser Asp Leu Glu Cys Asp Asp Ala Ala Thr Tyr Tyr Cys Gln Gln 100 105 110Gly Ala Thr Val Tyr Asp Ile Asp Asn Asn 115 120475128PRTOryctolagus cuniculus 475Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Leu Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu Thr Leu Thr Cys Thr Val Ser Gly Ile Asp Leu Ser 35 40 45Ala Tyr Ala Met Ile Trp Val Arg Gln Ala Pro Gly Glu Gly Leu Glu 50 55 60Trp Ile Thr Ile Ile Tyr Pro Asn Gly Ile Thr Tyr Tyr Ala Asn Trp65 70 75 80Ala Lys Gly Arg Phe Thr Val Ser Lys Thr Ser Thr Ala Met Asp Leu 85 90 95Lys Ile Thr Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala 100 105 110Arg Asp Ala Glu Ser Ser Lys Asn Ala Tyr Trp Gly Tyr Phe Asn Val 115 120 12547611PRTOryctolagus cuniculus 476Gln Ala Ser Glu Asn Ile Tyr Ser Phe Leu Ala1 5 104777PRTOryctolagus cuniculus 477Lys Ala Ser Thr Leu Ala Ser1 547812PRTOryctolagus cuniculus 478Gln Gln Gly Ala Thr Val Tyr Asp Ile Asp Asn Asn1 5 104795PRTOryctolagus cuniculus 479Ala Tyr Ala Met Ile1 548016PRTOryctolagus cuniculus 480Ile Ile Tyr Pro Asn Gly Ile Thr Tyr Tyr Ala Asn Trp Ala Lys Gly1 5 10 1548115PRTOryctolagus cuniculus 481Asp Ala Glu Ser Ser Lys Asn Ala Tyr Trp Gly Tyr Phe Asn Val1 5 10 15482366DNAOryctolagus cuniculus 482atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60agatgtgcct ctgatatgac ccagactcca tcctccgtgt ctgcagctgt gggaggcaca 120gtcaccatca attgccaggc cagtgagaac atttatagct ttttggcctg gtatcagcag 180aaaccagggc agcctcccaa gctcctgatc ttcaaggctt ccactctggc atctggggtc 240tcatcgcggt tcaaaggcag tggatctggg acacagttca ctctcaccat cagcgacctg 300gagtgtgacg atgctgccac ttactactgt caacagggtg ctactgtgta tgatattgat 360aataat 366483384DNAOryctolagus cuniculus 483atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60tcgctggagg agtccggggg tcgcctggtc acgcctggga cacccctgac actcacctgc 120acagtttctg gaatcgacct cagtgcctat gcaatgatct gggtccgcca ggctccaggg 180gaggggctgg aatggatcac aatcatttat cctaatggta tcacatacta cgcgaactgg 240gcgaaaggcc gattcaccgt ctccaaaacc tcgaccgcga tggatctgaa aatcaccagt 300ccgacaaccg aggacacggc cacctatttc tgtgccagag atgcagaaag tagtaagaat 360gcttattggg gctactttaa cgtc 38448433DNAOryctolagus cuniculus 484caggccagtg agaacattta tagctttttg gcc 3348521DNAOryctolagus cuniculus 485aaggcttcca ctctggcatc t 2148636DNAOryctolagus cuniculus 486caacagggtg ctactgtgta tgatattgat aataat 3648715DNAOryctolagus cuniculus 487gcctatgcaa tgatc 1548848DNAOryctolagus cuniculus 488atcatttatc ctaatggtat cacatactac gcgaactggg cgaaaggc 4848945DNAOryctolagus cuniculus 489gatgcagaaa gtagtaagaa tgcttattgg ggctacttta acgtc 45490122PRTOryctolagus cuniculus 490Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Arg Cys Ala Ser Asp Met Thr Gln Thr Pro Ser Ser 20 25 30Val Ser Ala Ala Val Gly Gly Thr Val Thr Ile Asn Cys Gln Ala Ser 35 40 45Glu Asn Ile Tyr Ser Phe Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln 50 55 60Pro Pro Lys Leu Leu Ile Phe Arg Ala Ser Thr Leu Ala Ser Gly Val65 70 75 80Ser Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Gln Phe Thr Leu Thr 85 90 95Ile Ser Asp Leu Glu Cys Asp Asp Ala Ala Thr Tyr Tyr Cys Gln Gln 100 105 110Gly Ala Thr Val Tyr Asp Ile Asp Asn Asn 115 120491128PRTOryctolagus cuniculus 491Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Leu Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu Thr Leu Thr Cys Thr Val Ser Gly Ile Asp Leu Ser 35 40 45Ala Tyr Ala Met Ile Trp Val Arg Gln Ala Pro Gly Glu Gly Leu Glu 50 55 60Trp Ile Thr Ile Ile Tyr Pro Asn Gly Ile Thr Tyr Tyr Ala Asn Trp65 70 75 80Ala Lys Gly Arg Phe Thr Val Ser Lys Thr Ser Thr Ala Met Asp Leu 85 90 95Lys Ile Thr Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala 100 105 110Arg Asp Ala Glu Ser Ser Lys Asn Ala Tyr Trp Gly Tyr Phe Asn Val 115 120 12549211PRTOryctolagus cuniculus 492Gln Ala Ser Glu Asn Ile Tyr Ser Phe Leu Ala1 5 104937PRTOryctolagus cuniculus 493Arg Ala Ser Thr Leu Ala Ser1 549412PRTOryctolagus cuniculus 494Gln Gln Gly Ala Thr Val Tyr Asp Ile Asp Asn Asn1 5 104955PRTOryctolagus cuniculus 495Ala Tyr Ala Met Ile1 549616PRTOryctolagus cuniculus 496Ile Ile Tyr Pro Asn Gly Ile Thr Tyr Tyr Ala Asn Trp Ala Lys Gly1 5 10 1549715PRTOryctolagus cuniculus 497Asp Ala Glu Ser Ser Lys Asn Ala Tyr Trp Gly Tyr Phe Asn Val1 5 10 15498366DNAOryctolagus cuniculus 498atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60agatgtgcct ctgatatgac ccagactcca tcctccgtgt ctgcagctgt gggaggcaca 120gtcaccatca attgccaggc cagtgagaac atttatagct ttttggcctg gtatcagcag 180aaaccagggc agcctcccaa gctcctgatc ttcagggctt ccactctggc atctggggtc 240tcatcgcggt tcaaaggcag tggatctggg acacagttca ctctcaccat cagcgacctg 300gagtgtgacg atgctgccac ttactactgt caacagggtg ctactgtgta tgatattgat 360aataat 366499384DNAOryctolagus cuniculus 499atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60tcgctggagg agtccggggg tcgcctggtc acgcctggga cacccctgac actcacctgc 120acagtttctg gaatcgacct cagtgcctat gcaatgatct gggtccgcca ggctccaggg 180gaggggctgg aatggatcac aatcatttat cctaatggta tcacatacta cgcgaactgg 240gcgaaaggcc gattcaccgt ctccaaaacc tcgaccgcga tggatctgaa aatcaccagt 300ccgacaaccg aggacacggc cacctatttc tgtgccagag atgcagaaag tagtaagaat 360gcttattggg gctactttaa cgtc 38450033DNAOryctolagus cuniculus 500caggccagtg agaacattta tagctttttg gcc 3350121DNAOryctolagus cuniculus 501agggcttcca ctctggcatc t 2150236DNAOryctolagus cuniculus 502caacagggtg ctactgtgta tgatattgat aataat 3650315DNAOryctolagus cuniculus 503gcctatgcaa tgatc 1550448DNAOryctolagus cuniculus 504atcatttatc ctaatggtat cacatactac gcgaactggg cgaaaggc 4850545DNAOryctolagus cuniculus 505gatgcagaaa gtagtaagaa tgcttattgg ggctacttta acgtc 45506124PRTOryctolagus cuniculus 506Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Thr Phe Ala Ile Glu Met Thr Gln Thr Pro Ser

Pro 20 25 30Val Ser Ala Ala Val Gly Gly Thr Val Thr Ile Asn Cys Gln Ala Ser 35 40 45Glu Ser Val Phe Asn Asn Met Leu Ser Trp Tyr Gln Gln Lys Pro Gly 50 55 60His Ser Pro Lys Leu Leu Ile Tyr Asp Ala Ser Asp Leu Ala Ser Gly65 70 75 80Val Pro Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Gln Phe Thr Leu 85 90 95Thr Ile Ser Gly Val Glu Cys Asp Asp Ala Ala Thr Tyr Tyr Cys Ala 100 105 110Gly Tyr Lys Ser Asp Ser Asn Asp Gly Asp Asn Val 115 120507123PRTOryctolagus cuniculus 507Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Leu Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Asn 35 40 45Arg Asn Ser Ile Thr Trp Val Arg Gln Ala Pro Gly Glu Gly Leu Glu 50 55 60Trp Ile Gly Ile Ile Thr Gly Ser Gly Arg Thr Tyr Tyr Ala Asn Trp65 70 75 80Ala Lys Gly Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu 85 90 95Lys Met Thr Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala 100 105 110Arg Gly His Pro Gly Leu Gly Ser Gly Asn Ile 115 12050812PRTOryctolagus cuniculus 508Gln Ala Ser Glu Ser Val Phe Asn Asn Met Leu Ser1 5 105097PRTOryctolagus cuniculus 509Asp Ala Ser Asp Leu Ala Ser1 551013PRTOryctolagus cuniculus 510Ala Gly Tyr Lys Ser Asp Ser Asn Asp Gly Asp Asn Val1 5 105115PRTOryctolagus cuniculus 511Arg Asn Ser Ile Thr1 551216PRTOryctolagus cuniculus 512Ile Ile Thr Gly Ser Gly Arg Thr Tyr Tyr Ala Asn Trp Ala Lys Gly1 5 10 1551310PRTOryctolagus cuniculus 513Gly His Pro Gly Leu Gly Ser Gly Asn Ile1 5 10514372DNAOryctolagus cuniculus 514atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60acatttgcca ttgaaatgac ccagactcca tcccccgtgt ctgccgctgt gggaggcaca 120gtcaccatca attgccaggc cagtgagagt gtttttaata atatgttatc ctggtatcag 180cagaaaccag ggcactctcc taagctcctg atctatgatg catccgatct ggcatctggg 240gtcccatcgc ggttcaaagg cagtggatct gggacacagt tcactctcac catcagtggc 300gtggagtgtg acgatgctgc cacttactat tgtgcagggt ataaaagtga tagtaatgat 360ggcgataatg tt 372515369DNAOryctolagus cuniculus 515atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60tcgctggagg agtccggggg tcgcctggtc acgcctggga cacccctgac actcacctgc 120acagtctctg gattctccct caacaggaat tcaataacct gggtccgcca ggctccaggg 180gaggggctgg aatggatcgg aatcattact ggtagtggta gaacgtacta cgcgaactgg 240gcaaaaggcc gattcaccat ctccaaaacc tcgaccacgg tggatctgaa aatgaccagt 300ccgacaaccg aggacacggc cacctatttc tgtgccagag gccatcctgg tcttggtagt 360ggtaacatc 36951636DNAOryctolagus cuniculus 516caggccagtg agagtgtttt taataatatg ttatcc 3651721DNAOryctolagus cuniculus 517gatgcatccg atctggcatc t 2151839DNAOryctolagus cuniculus 518gcagggtata aaagtgatag taatgatggc gataatgtt 3951915DNAOryctolagus cuniculus 519aggaattcaa taacc 1552048DNAOryctolagus cuniculus 520atcattactg gtagtggtag aacgtactac gcgaactggg caaaaggc 4852130DNAOryctolagus cuniculus 521ggccatcctg gtcttggtag tggtaacatc 30522121PRTOryctolagus cuniculus 522Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Thr Phe Ala Gln Val Leu Thr Gln Thr Ala Ser Ser 20 25 30Val Ser Ala Ala Val Gly Gly Thr Val Thr Ile Asn Cys Gln Ser Ser 35 40 45Gln Ser Val Tyr Asn Asn Tyr Leu Ser Trp Tyr Gln Gln Lys Pro Gly 50 55 60Gln Pro Pro Lys Leu Leu Ile Tyr Thr Ala Ser Ser Leu Ala Ser Gly65 70 75 80Val Pro Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Gln Phe Thr Leu 85 90 95Thr Ile Ser Glu Val Gln Cys Asp Asp Ala Ala Thr Tyr Tyr Cys Gln 100 105 110Gly Tyr Tyr Ser Gly Pro Ile Ile Thr 115 120523122PRTOryctolagus cuniculus 523Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Leu Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Leu Asn 35 40 45Asn Tyr Tyr Ile Gln Trp Val Arg Gln Ala Pro Gly Glu Gly Leu Glu 50 55 60Trp Ile Gly Ile Ile Tyr Ala Gly Gly Ser Ala Tyr Tyr Ala Thr Trp65 70 75 80Ala Asn Gly Arg Phe Thr Ile Ala Lys Thr Ser Ser Thr Thr Val Asp 85 90 95Leu Lys Met Thr Ser Leu Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys 100 105 110Ala Arg Gly Thr Phe Asp Gly Tyr Glu Leu 115 12052412PRTOryctolagus cuniculus 524Gln Ser Ser Gln Ser Val Tyr Asn Asn Tyr Leu Ser1 5 105257PRTOryctolagus cuniculus 525Thr Ala Ser Ser Leu Ala Ser1 552610PRTOryctolagus cuniculus 526Gln Gly Tyr Tyr Ser Gly Pro Ile Ile Thr1 5 105275PRTOryctolagus cuniculus 527Asn Tyr Tyr Ile Gln1 552816PRTOryctolagus cuniculus 528Ile Ile Tyr Ala Gly Gly Ser Ala Tyr Tyr Ala Thr Trp Ala Asn Gly1 5 10 155298PRTOryctolagus cuniculus 529Gly Thr Phe Asp Gly Tyr Glu Leu1 5530363DNAOryctolagus cuniculus 530atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60acatttgcgc aagtgctgac ccagactgca tcgtccgtgt ctgcagctgt gggaggcaca 120gtcaccatca attgccagtc cagtcagagt gtttataata actacttatc ctggtatcag 180cagaaaccag ggcagcctcc caagctcctg atctatactg catccagcct ggcatctggg 240gtcccatcgc ggttcaaagg cagtggatct gggacacagt tcactctcac catcagcgaa 300gtgcagtgtg acgatgctgc cacttactac tgtcaaggct attatagtgg tcctataatt 360act 363531366DNAOryctolagus cuniculus 531atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60tcgctggagg agtccggggg tcgcctggtc acgcctggga cacccctgac actcacctgc 120acagcctctg gattctccct caataactac tacatacaat gggtccgcca ggctccaggg 180gaggggctgg aatggatcgg gatcatttat gctggtggta gcgcatacta cgcgacctgg 240gcaaacggcc gattcaccat cgccaaaacc tcgtcgacca cggtggatct gaagatgacc 300agtctgacaa ccgaggacac ggccacctat ttctgtgcca gagggacatt tgatggttat 360gagttg 36653236DNAOryctolagus cuniculus 532cagtccagtc agagtgttta taataactac ttatcc 3653321DNAOryctolagus cuniculus 533actgcatcca gcctggcatc t 2153430DNAOryctolagus cuniculus 534caaggctatt atagtggtcc tataattact 3053515DNAOryctolagus cuniculus 535aactactaca tacaa 1553648DNAOryctolagus cuniculus 536atcatttatg ctggtggtag cgcatactac gcgacctggg caaacggc 4853724DNAOryctolagus cuniculus 537gggacatttg atggttatga gttg 24538122PRTOryctolagus cuniculus 538Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Thr Phe Ala Gln Val Leu Thr Gln Thr Pro Ser Pro 20 25 30Val Ser Val Pro Val Gly Asp Thr Val Thr Ile Ser Cys Gln Ser Ser 35 40 45Glu Ser Val Tyr Ser Asn Asn Leu Leu Ser Trp Tyr Gln Gln Lys Pro 50 55 60Gly Gln Pro Pro Lys Leu Leu Ile Tyr Arg Ala Ser Asn Leu Ala Ser65 70 75 80Gly Val Pro Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Gln Phe Thr 85 90 95Leu Thr Ile Ser Gly Ala Gln Cys Asp Asp Ala Ala Thr Tyr Tyr Cys 100 105 110Gln Gly Tyr Tyr Ser Gly Val Ile Asn Ser 115 120539124PRTOryctolagus cuniculus 539Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Ser 35 40 45Ser Tyr Phe Met Ser Trp Val Arg Gln Ala Pro Gly Glu Gly Leu Glu 50 55 60Tyr Ile Gly Phe Ile Asn Pro Gly Gly Ser Ala Tyr Tyr Ala Ser Trp65 70 75 80Ala Ser Gly Arg Leu Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu 85 90 95Lys Ile Thr Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala 100 105 110Arg Ile Leu Ile Val Ser Tyr Gly Ala Phe Thr Ile 115 12054013PRTOryctolagus cuniculus 540Gln Ser Ser Glu Ser Val Tyr Ser Asn Asn Leu Leu Ser1 5 105417PRTOryctolagus cuniculus 541Arg Ala Ser Asn Leu Ala Ser1 554210PRTOryctolagus cuniculus 542Gln Gly Tyr Tyr Ser Gly Val Ile Asn Ser1 5 105435PRTOryctolagus cuniculus 543Ser Tyr Phe Met Ser1 554416PRTOryctolagus cuniculus 544Phe Ile Asn Pro Gly Gly Ser Ala Tyr Tyr Ala Ser Trp Ala Ser Gly1 5 10 1554511PRTOryctolagus cuniculus 545Ile Leu Ile Val Ser Tyr Gly Ala Phe Thr Ile1 5 10546366DNAOryctolagus cuniculus 546atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60acatttgccc aagtgctgac ccagactcca tcccctgtgt ctgtccctgt gggagacaca 120gtcaccatca gttgccagtc cagtgagagc gtttatagta ataacctctt atcctggtat 180cagcagaaac cagggcagcc tcccaagctc ctgatctaca gggcatccaa tctggcatct 240ggtgtcccat cgcggttcaa aggcagtgga tctgggacac agttcactct caccatcagc 300ggcgcacagt gtgacgatgc tgccacttac tactgtcaag gctattatag tggtgtcatt 360aatagt 366547372DNAOryctolagus cuniculus 547atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60tcggtggagg agtccggggg tcgcctggtc acgcctggga cacccctgac actcacctgc 120acagtgtctg gattctccct cagtagctac ttcatgagct gggtccgcca ggctccaggg 180gaggggctgg aatacatcgg attcattaat cctggtggta gcgcatacta cgcgagctgg 240gcgagtggcc gactcaccat ctccaaaacc tcgaccacgg tagatctgaa aatcaccagt 300ccgacaaccg aggacacggc cacctatttc tgtgccagga ttcttattgt ttcttatgga 360gcctttacca tc 37254839DNAOryctolagus cuniculus 548cagtccagtg agagcgttta tagtaataac ctcttatcc 3954921DNAOryctolagus cuniculus 549agggcatcca atctggcatc t 2155030DNAOryctolagus cuniculus 550caaggctatt atagtggtgt cattaatagt 3055115DNAOryctolagus cuniculus 551agctacttca tgagc 1555248DNAOryctolagus cuniculus 552ttcattaatc ctggtggtag cgcatactac gcgagctggg cgagtggc 4855333DNAOryctolagus cuniculus 553attcttattg tttcttatgg agcctttacc atc 33554122PRTOryctolagus cuniculus 554Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Arg Cys Ala Tyr Asp Met Thr Gln Thr Pro Ala Ser 20 25 30Val Glu Val Ala Val Gly Gly Thr Val Thr Ile Lys Cys Gln Ala Thr 35 40 45Glu Ser Ile Gly Asn Glu Leu Ser Trp Tyr Gln Gln Lys Pro Gly Gln 50 55 60Ala Pro Lys Leu Leu Ile Tyr Ser Ala Ser Thr Leu Ala Ser Gly Val65 70 75 80Pro Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Gln Phe Thr Leu Thr 85 90 95Ile Thr Gly Val Glu Cys Asp Asp Ala Ala Thr Tyr Tyr Cys Gln Gln 100 105 110Gly Tyr Ser Ser Ala Asn Ile Asp Asn Ala 115 120555128PRTOryctolagus cuniculus 555Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Leu Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Ser 35 40 45Lys Tyr Tyr Met Ser Trp Val Arg Gln Ala Pro Glu Lys Gly Leu Lys 50 55 60Tyr Ile Gly Tyr Ile Asp Ser Thr Thr Val Asn Thr Tyr Tyr Ala Thr65 70 75 80Trp Ala Arg Gly Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp 85 90 95Leu Lys Ile Thr Ser Pro Thr Ser Glu Asp Thr Ala Thr Tyr Phe Cys 100 105 110Ala Arg Gly Ser Thr Tyr Phe Thr Asp Gly Gly His Arg Leu Asp Leu 115 120 12555611PRTOryctolagus cuniculus 556Gln Ala Thr Glu Ser Ile Gly Asn Glu Leu Ser1 5 105577PRTOryctolagus cuniculus 557Ser Ala Ser Thr Leu Ala Ser1 555812PRTOryctolagus cuniculus 558Gln Gln Gly Tyr Ser Ser Ala Asn Ile Asp Asn Ala1 5 105595PRTOryctolagus cuniculus 559Lys Tyr Tyr Met Ser1 556017PRTOryctolagus cuniculus 560Tyr Ile Asp Ser Thr Thr Val Asn Thr Tyr Tyr Ala Thr Trp Ala Arg1 5 10 15Gly56114PRTOryctolagus cuniculus 561Gly Ser Thr Tyr Phe Thr Asp Gly Gly His Arg Leu Asp Leu1 5 10562366DNAOryctolagus cuniculus 562atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60agatgtgcct atgatatgac ccagactcca gcctctgtgg aggtagctgt gggaggcaca 120gtcaccatca agtgccaggc cactgagagc attggcaatg agttatcctg gtatcagcag 180aaaccagggc aggctcccaa gctcctgatc tattctgcat ccactctggc atctggggtc 240ccatcgcggt tcaaaggcag tggatctggg acacagttca ctctcaccat caccggcgtg 300gagtgtgatg atgctgccac ttactactgt caacagggtt atagtagtgc taatattgat 360aatgct 366563384DNAOryctolagus cuniculus 563atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60tcgctggagg agtccggggg tcgcctggtc acgcctggga cacccctgac actcacctgc 120accgtctctg gattctccct cagtaagtac tacatgagct gggtccgcca ggctccagag 180aaggggctga aatacatcgg atacattgat agtactactg ttaatacata ctacgcgacc 240tgggcgagag gccgattcac catctccaaa acctcgacca cggtggatct gaagatcacc 300agtccgacaa gtgaggacac ggccacctat ttctgtgcca gaggaagtac ttattttact 360gatggaggcc atcggttgga tctc 38456433DNAOryctolagus cuniculus 564caggccactg agagcattgg caatgagtta tcc 3356521DNAOryctolagus cuniculus 565tctgcatcca ctctggcatc t 2156636DNAOryctolagus cuniculus 566caacagggtt atagtagtgc taatattgat aatgct 3656715DNAOryctolagus cuniculus 567aagtactaca tgagc 1556851DNAOryctolagus cuniculus 568tacattgata gtactactgt taatacatac tacgcgacct gggcgagagg c 5156942DNAOryctolagus cuniculus 569ggaagtactt attttactga tggaggccat cggttggatc tc 42570122PRTOryctolagus cuniculus 570Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Arg Cys Ala Tyr Asp Met Thr Gln Thr Pro Ala Ser 20 25 30Val Glu Val Ala Val Gly Gly Thr Val Thr Ile Lys Cys Gln Ala Thr 35 40 45Glu Ser Ile Gly Asn Glu Leu Ser Trp Tyr Gln Gln Lys Pro Gly Gln 50 55 60Ala Pro Lys Leu Leu Ile Tyr Ser Ala Ser Thr Leu Ala Ser Gly Val65 70 75 80Pro Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Gln Phe Thr Leu Thr 85 90 95Ile Thr Gly Val Glu Cys Asp Asp Ala Ala Thr Tyr Tyr Cys Gln Gln 100 105 110Gly Tyr Ser Ser Ala Asn Ile Asp Asn Ala 115 120571124PRTOryctolagus cuniculus 571Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Leu Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu

Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Ser 35 40 45Thr Tyr Asn Met Gly Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 50 55 60Trp Ile Gly Ser Ile Thr Ile Asp Gly Arg Thr Tyr Tyr Ala Ser Trp65 70 75 80Ala Lys Gly Arg Phe Thr Val Ser Lys Ser Ser Thr Thr Val Asp Leu 85 90 95Lys Met Thr Ser Leu Thr Thr Gly Asp Thr Ala Thr Tyr Phe Cys Ala 100 105 110Arg Ile Leu Ile Val Ser Tyr Gly Ala Phe Thr Ile 115 12057211PRTOryctolagus cuniculus 572Gln Ala Thr Glu Ser Ile Gly Asn Glu Leu Ser1 5 105737PRTOryctolagus cuniculus 573Ser Ala Ser Thr Leu Ala Ser1 557412PRTOryctolagus cuniculus 574Gln Gln Gly Tyr Ser Ser Ala Asn Ile Asp Asn Ala1 5 105755PRTOryctolagus cuniculus 575Thr Tyr Asn Met Gly1 557616PRTOryctolagus cuniculus 576Ser Ile Thr Ile Asp Gly Arg Thr Tyr Tyr Ala Ser Trp Ala Lys Gly1 5 10 1557711PRTOryctolagus cuniculus 577Ile Leu Ile Val Ser Tyr Gly Ala Phe Thr Ile1 5 10578366DNAOryctolagus cuniculus 578atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60agatgtgcct atgatatgac ccagactcca gcctctgtgg aggtagctgt gggaggcaca 120gtcaccatca agtgccaggc cactgagagc attggcaatg agttatcctg gtatcagcag 180aaaccagggc aggctcccaa gctcctgatc tattctgcat ccactctggc atctggggtc 240ccatcgcggt tcaaaggcag tggatctggg acacagttca ctctcaccat caccggcgtg 300gagtgtgatg atgctgccac ttactactgt caacagggtt atagtagtgc taatattgat 360aatgct 366579372DNAOryctolagus cuniculus 579atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60tcgctggagg agtccggggg tcgcctggta acgcctggga cacccctgac actcacctgc 120acagtctctg gattctccct cagtacctac aacatgggct gggtccgcca ggctccaggg 180aaggggctgg aatggatcgg aagtattact attgatggtc gcacatacta cgcgagctgg 240gcgaaaggcc gattcaccgt ctccaaaagc tcgaccacgg tggatctgaa aatgaccagt 300ctgacaaccg gggacacggc cacctatttc tgtgccagga ttcttattgt ttcttatggg 360gcctttacca tc 37258033DNAOryctolagus cuniculus 580caggccactg agagcattgg caatgagtta tcc 3358121DNAOryctolagus cuniculus 581tctgcatcca ctctggcatc t 2158236DNAOryctolagus cuniculus 582caacagggtt atagtagtgc taatattgat aatgct 3658315DNAOryctolagus cuniculus 583acctacaaca tgggc 1558448DNAOryctolagus cuniculus 584agtattacta ttgatggtcg cacatactac gcgagctggg cgaaaggc 4858533DNAOryctolagus cuniculus 585attcttattg tttcttatgg ggcctttacc atc 33586105PRTArtificial SequenceKappa constant domain 586Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu1 5 10 15Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro 20 25 30Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly 35 40 45Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr 50 55 60Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His65 70 75 80Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val 85 90 95Thr Lys Ser Phe Asn Arg Gly Glu Cys 100 105587315DNAArtificial SequenceKappa constant domain 587gtggctgcac catctgtctt catcttcccg ccatctgatg agcagttgaa atctggaact 60gcctctgttg tgtgcctgct gaataacttc tatcccagag aggccaaagt acagtggaag 120gtggataacg ccctccaatc gggtaactcc caggagagtg tcacagagca ggacagcaag 180gacagcacct acagcctcag cagcaccctg acgctgagca aagcagacta cgagaaacac 240aaagtctacg cctgcgaagt cacccatcag ggcctgagct cgcccgtcac aaagagcttc 300aacaggggag agtgt 315588330PRTArtificial SequenceGamma-1 constant domain 588Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys1 5 10 15Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr65 70 75 80Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys 85 90 95Arg Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys 100 105 110Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro 115 120 125Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys 130 135 140Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp145 150 155 160Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu 165 170 175Glu Gln Tyr Ala Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu 180 185 190His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn 195 200 205Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly 210 215 220Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu225 230 235 240Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr 245 250 255Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn 260 265 270Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 275 280 285Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn 290 295 300Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr305 310 315 320Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 325 330589990DNAArtificial SequenceGamma-1 constant domain 589gcctccacca agggcccatc ggtcttcccc ctggcaccct cctccaagag cacctctggg 60ggcacagcgg ccctgggctg cctggtcaag gactacttcc ccgaaccggt gacggtgtcg 120tggaactcag gcgccctgac cagcggcgtg cacaccttcc cggctgtcct acagtcctca 180ggactctact ccctcagcag cgtggtgacc gtgccctcca gcagcttggg cacccagacc 240tacatctgca acgtgaatca caagcccagc aacaccaagg tggacaagag agttgagccc 300aaatcttgtg acaaaactca cacatgccca ccgtgcccag cacctgaact cctgggggga 360ccgtcagtct tcctcttccc cccaaaaccc aaggacaccc tcatgatctc ccggacccct 420gaggtcacat gcgtggtggt ggacgtgagc cacgaagacc ctgaggtcaa gttcaactgg 480tacgtggacg gcgtggaggt gcataatgcc aagacaaagc cgcgggagga gcagtacgcc 540agcacgtacc gtgtggtcag cgtcctcacc gtcctgcacc aggactggct gaatggcaag 600gagtacaagt gcaaggtctc caacaaagcc ctcccagccc ccatcgagaa aaccatctcc 660aaagccaaag ggcagccccg agaaccacag gtgtacaccc tgcccccatc ccgggaggag 720atgaccaaga accaggtcag cctgacctgc ctggtcaaag gcttctatcc cagcgacatc 780gccgtggagt gggagagcaa tgggcagccg gagaacaact acaagaccac gcctcccgtg 840ctggactccg acggctcctt cttcctctac agcaagctca ccgtggacaa gagcaggtgg 900cagcagggga acgtcttctc atgctccgtg atgcatgagg ctctgcacaa ccactacacg 960cagaagagcc tctccctgtc tccgggtaaa 99059015PRTHomo sapiens 590Val Pro Pro Gly Glu Asp Ser Lys Asp Val Ala Ala Pro His Arg1 5 10 1559115PRTHomo sapiens 591Gly Glu Asp Ser Lys Asp Val Ala Ala Pro His Arg Gln Pro Leu1 5 10 1559215PRTHomo sapiens 592Ser Lys Asp Val Ala Ala Pro His Arg Gln Pro Leu Thr Ser Ser1 5 10 1559315PRTHomo sapiens 593Val Ala Ala Pro His Arg Gln Pro Leu Thr Ser Ser Glu Arg Ile1 5 10 1559415PRTHomo sapiens 594Pro His Arg Gln Pro Leu Thr Ser Ser Glu Arg Ile Asp Lys Gln1 5 10 1559515PRTHomo sapiens 595Gln Pro Leu Thr Ser Ser Glu Arg Ile Asp Lys Gln Ile Arg Tyr1 5 10 1559615PRTHomo sapiens 596Thr Ser Ser Glu Arg Ile Asp Lys Gln Ile Arg Tyr Ile Leu Asp1 5 10 1559715PRTHomo sapiens 597Glu Arg Ile Asp Lys Gln Ile Arg Tyr Ile Leu Asp Gly Ile Ser1 5 10 1559815PRTHomo sapiens 598Asp Lys Gln Ile Arg Tyr Ile Leu Asp Gly Ile Ser Ala Leu Arg1 5 10 1559915PRTHomo sapiens 599Ile Arg Tyr Ile Leu Asp Gly Ile Ser Ala Leu Arg Lys Glu Thr1 5 10 1560015PRTHomo sapiens 600Ile Leu Asp Gly Ile Ser Ala Leu Arg Lys Glu Thr Cys Asn Lys1 5 10 1560115PRTHomo sapiens 601Gly Ile Ser Ala Leu Arg Lys Glu Thr Cys Asn Lys Ser Asn Met1 5 10 1560215PRTHomo sapiens 602Ala Leu Arg Lys Glu Thr Cys Asn Lys Ser Asn Met Cys Glu Ser1 5 10 1560315PRTHomo sapiens 603Lys Glu Thr Cys Asn Lys Ser Asn Met Cys Glu Ser Ser Lys Glu1 5 10 1560415PRTHomo sapiens 604Cys Asn Lys Ser Asn Met Cys Glu Ser Ser Lys Glu Ala Leu Ala1 5 10 1560515PRTHomo sapiens 605Ser Asn Met Cys Glu Ser Ser Lys Glu Ala Leu Ala Glu Asn Asn1 5 10 1560615PRTHomo sapiens 606Cys Glu Ser Ser Lys Glu Ala Leu Ala Glu Asn Asn Leu Asn Leu1 5 10 1560715PRTHomo sapiens 607Ser Lys Glu Ala Leu Ala Glu Asn Asn Leu Asn Leu Pro Lys Met1 5 10 1560815PRTHomo sapiens 608Ala Leu Ala Glu Asn Asn Leu Asn Leu Pro Lys Met Ala Glu Lys1 5 10 1560915PRTHomo sapiens 609Glu Asn Asn Leu Asn Leu Pro Lys Met Ala Glu Lys Asp Gly Cys1 5 10 1561015PRTHomo sapiens 610Leu Asn Leu Pro Lys Met Ala Glu Lys Asp Gly Cys Phe Gln Ser1 5 10 1561115PRTHomo sapiens 611Pro Lys Met Ala Glu Lys Asp Gly Cys Phe Gln Ser Gly Phe Asn1 5 10 1561215PRTHomo sapiens 612Ala Glu Lys Asp Gly Cys Phe Gln Ser Gly Phe Asn Glu Glu Thr1 5 10 1561315PRTHomo sapiens 613Asp Gly Cys Phe Gln Ser Gly Phe Asn Glu Glu Thr Cys Leu Val1 5 10 1561415PRTHomo sapiens 614Phe Gln Ser Gly Phe Asn Glu Glu Thr Cys Leu Val Lys Ile Ile1 5 10 1561515PRTHomo sapiens 615Gly Phe Asn Glu Glu Thr Cys Leu Val Lys Ile Ile Thr Gly Leu1 5 10 1561615PRTHomo sapiens 616Glu Glu Thr Cys Leu Val Lys Ile Ile Thr Gly Leu Leu Glu Phe1 5 10 1561715PRTHomo sapiens 617Cys Leu Val Lys Ile Ile Thr Gly Leu Leu Glu Phe Glu Val Tyr1 5 10 1561815PRTHomo sapiens 618Lys Ile Ile Thr Gly Leu Leu Glu Phe Glu Val Tyr Leu Glu Tyr1 5 10 1561915PRTHomo sapiens 619Thr Gly Leu Leu Glu Phe Glu Val Tyr Leu Glu Tyr Leu Gln Asn1 5 10 1562015PRTHomo sapiens 620Leu Glu Phe Glu Val Tyr Leu Glu Tyr Leu Gln Asn Arg Phe Glu1 5 10 1562115PRTHomo sapiens 621Glu Val Tyr Leu Glu Tyr Leu Gln Asn Arg Phe Glu Ser Ser Glu1 5 10 1562215PRTHomo sapiens 622Leu Glu Tyr Leu Gln Asn Arg Phe Glu Ser Ser Glu Glu Gln Ala1 5 10 1562315PRTHomo sapiens 623Leu Gln Asn Arg Phe Glu Ser Ser Glu Glu Gln Ala Arg Ala Val1 5 10 1562415PRTHomo sapiens 624Arg Phe Glu Ser Ser Glu Glu Gln Ala Arg Ala Val Gln Met Ser1 5 10 1562515PRTHomo sapiens 625Ser Ser Glu Glu Gln Ala Arg Ala Val Gln Met Ser Thr Lys Val1 5 10 1562615PRTHomo sapiens 626Glu Gln Ala Arg Ala Val Gln Met Ser Thr Lys Val Leu Ile Gln1 5 10 1562715PRTHomo sapiens 627Arg Ala Val Gln Met Ser Thr Lys Val Leu Ile Gln Phe Leu Gln1 5 10 1562815PRTHomo sapiens 628Gln Met Ser Thr Lys Val Leu Ile Gln Phe Leu Gln Lys Lys Ala1 5 10 1562915PRTHomo sapiens 629Thr Lys Val Leu Ile Gln Phe Leu Gln Lys Lys Ala Lys Asn Leu1 5 10 1563015PRTHomo sapiens 630Leu Ile Gln Phe Leu Gln Lys Lys Ala Lys Asn Leu Asp Ala Ile1 5 10 1563115PRTHomo sapiens 631Phe Leu Gln Lys Lys Ala Lys Asn Leu Asp Ala Ile Thr Thr Pro1 5 10 1563215PRTHomo sapiens 632Lys Lys Ala Lys Asn Leu Asp Ala Ile Thr Thr Pro Asp Pro Thr1 5 10 1563315PRTHomo sapiens 633Lys Asn Leu Asp Ala Ile Thr Thr Pro Asp Pro Thr Thr Asn Ala1 5 10 1563415PRTHomo sapiens 634Asp Ala Ile Thr Thr Pro Asp Pro Thr Thr Asn Ala Ser Leu Leu1 5 10 1563515PRTHomo sapiens 635Thr Thr Pro Asp Pro Thr Thr Asn Ala Ser Leu Leu Thr Lys Leu1 5 10 1563615PRTHomo sapiens 636Asp Pro Thr Thr Asn Ala Ser Leu Leu Thr Lys Leu Gln Ala Gln1 5 10 1563715PRTHomo sapiens 637Thr Asn Ala Ser Leu Leu Thr Lys Leu Gln Ala Gln Asn Gln Trp1 5 10 1563815PRTHomo sapiens 638Ser Leu Leu Thr Lys Leu Gln Ala Gln Asn Gln Trp Leu Gln Asp1 5 10 1563915PRTHomo sapiens 639Thr Lys Leu Gln Ala Gln Asn Gln Trp Leu Gln Asp Met Thr Thr1 5 10 1564015PRTHomo sapiens 640Gln Ala Gln Asn Gln Trp Leu Gln Asp Met Thr Thr His Leu Ile1 5 10 1564115PRTHomo sapiens 641Asn Gln Trp Leu Gln Asp Met Thr Thr His Leu Ile Leu Arg Ser1 5 10 1564215PRTHomo sapiens 642Leu Gln Asp Met Thr Thr His Leu Ile Leu Arg Ser Phe Lys Glu1 5 10 1564315PRTHomo sapiens 643Met Thr Thr His Leu Ile Leu Arg Ser Phe Lys Glu Phe Leu Gln1 5 10 1564415PRTHomo sapiens 644His Leu Ile Leu Arg Ser Phe Lys Glu Phe Leu Gln Ser Ser Leu1 5 10 1564515PRTHomo sapiens 645Leu Arg Ser Phe Lys Glu Phe Leu Gln Ser Ser Leu Arg Ala Leu1 5 10 1564615PRTHomo sapiens 646Phe Lys Glu Phe Leu Gln Ser Ser Leu Arg Ala Leu Arg Gln Met1 5 10 15647111PRTOryctolagus cuniculus 647Ala Tyr Asp Met Thr Gln Thr Pro Ala Ser Val Ser Ala Ala Val Gly1 5 10 15Gly Thr Val Thr Ile Lys Cys Gln Ala Ser Gln Ser Ile Asn Asn Glu 20 25 30Leu Ser Trp Tyr Gln Gln Lys Pro Gly Gln Arg Pro Lys Leu Leu Ile 35 40 45Tyr Arg Ala Ser Thr Leu Ala Ser Gly Val Ser Ser Arg Phe Lys Gly 50 55 60Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Asp Leu Glu Cys65 70 75 80Ala Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Gly Tyr Ser Leu Arg Asn 85 90 95Ile Asp Asn Ala Phe Gly Gly Gly Thr Glu Val Val Val Lys Arg 100 105 11064888PRTHomo sapiens 648Ala Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1 5 10 15Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Arg Asn Asp 20 25 30Leu Gly Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65 70 75 80Glu Asp Phe Ala Thr Tyr Tyr Cys 8564988PRTHomo sapiens 649Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1 5 10 15Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Asn Tyr 20 25 30Leu Ala Trp Tyr Gln Gln Lys

Pro Gly Lys Val Pro Lys Leu Leu Ile 35 40 45Tyr Ala Ala Ser Thr Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65 70 75 80Glu Asp Val Ala Thr Tyr Tyr Cys 8565088PRTHomo sapiens 650Asp Ile Gln Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly1 5 10 15Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Ser Ser Trp 20 25 30Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45Tyr Lys Ala Ser Ser Leu Glu Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65 70 75 80Asp Asp Phe Ala Thr Tyr Tyr Cys 85651111PRTArtificial SequenceHumanized antibody 651Ala Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1 5 10 15Asp Arg Val Thr Ile Thr Cys Gln Ala Ser Gln Ser Ile Asn Asn Glu 20 25 30Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45Tyr Arg Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65 70 75 80Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Gly Tyr Ser Leu Arg Asn 85 90 95Ile Asp Asn Ala Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg 100 105 110652117PRTOryctolagus cuniculus 652Gln Ser Leu Glu Glu Ser Gly Gly Arg Leu Val Thr Pro Gly Thr Pro1 5 10 15Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Leu Ser Asn Tyr Tyr 20 25 30Val Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile Gly 35 40 45Ile Ile Tyr Gly Ser Asp Glu Thr Ala Tyr Ala Thr Trp Ala Ile Gly 50 55 60Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu Lys Met Thr65 70 75 80Ser Leu Thr Ala Ala Asp Thr Ala Thr Tyr Phe Cys Ala Arg Asp Asp 85 90 95Ser Ser Asp Trp Asp Ala Lys Phe Asn Leu Trp Gly Gln Gly Thr Leu 100 105 110Val Thr Val Ser Ser 11565397PRTHomo sapiens 653Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Val Ser Ser Asn 20 25 30Tyr Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Ser Val Ile Tyr Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val Lys 50 55 60Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu65 70 75 80Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95Arg65497PRTHomo sapiens 654Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Ile Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Val Ser Ser Asn 20 25 30Tyr Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Ser Val Ile Tyr Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val Lys 50 55 60Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu65 70 75 80Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95Arg65598PRTHomo sapiens 655Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr 20 25 30Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Ser Val Ile Tyr Ser Gly Gly Ser Ser Thr Tyr Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Lys656120PRTArtificial sequenceHumanized antibody 656Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Leu Ser Asn Tyr 20 25 30Tyr Val Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Ile Ile Tyr Gly Ser Asp Glu Thr Ala Tyr Ala Thr Trp Ala Ile 50 55 60Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu65 70 75 80Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95Arg Asp Asp Ser Ser Asp Trp Asp Ala Lys Phe Asn Leu Trp Gly Gln 100 105 110Gly Thr Leu Val Thr Val Ser Ser 115 120657120PRTArtificial sequenceHumanized antibody 657Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Leu Ser Asn Tyr 20 25 30Tyr Val Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Ile Ile Tyr Gly Ser Asp Glu Thr Ala Tyr Ala Thr Ser Ala Ile 50 55 60Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu65 70 75 80Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95Arg Asp Asp Ser Ser Asp Trp Asp Ala Lys Phe Asn Leu Trp Gly Gln 100 105 110Gly Thr Leu Val Thr Val Ser Ser 115 120658166PRTOryctolagus cuniculus 658Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Leu Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Leu Ser 35 40 45Asn Tyr Tyr Val Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 50 55 60Trp Ile Gly Ile Ile Tyr Gly Ser Asp Glu Thr Ala Tyr Ala Thr Ser65 70 75 80Ala Ile Gly Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu 85 90 95Lys Met Thr Ser Leu Thr Ala Ala Asp Thr Ala Thr Tyr Phe Cys Ala 100 105 110Arg Asp Asp Ser Ser Asp Trp Asp Ala Lys Phe Asn Leu Trp Gly Gln 115 120 125Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 130 135 140Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala145 150 155 160Leu Gly Cys Leu Val Lys 16565916PRTOryctolagus cuniculus 659Ile Ile Tyr Gly Ser Asp Glu Thr Ala Tyr Ala Thr Ser Ala Ile Gly1 5 10 15660122PRTOryctolagus cuniculus 660Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Arg Cys Ala Tyr Asp Met Thr Gln Thr Pro Ala Ser 20 25 30Val Ser Ala Ala Val Gly Gly Thr Val Thr Ile Lys Cys Gln Ala Ser 35 40 45Gln Ser Ile Asn Asn Glu Leu Ser Trp Tyr Gln Gln Lys Pro Gly Gln 50 55 60Arg Pro Lys Leu Leu Ile Tyr Arg Ala Ser Thr Leu Ala Ser Gly Val65 70 75 80Ser Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr 85 90 95Ile Ser Asp Leu Glu Cys Ala Asp Ala Ala Thr Tyr Tyr Cys Gln Gln 100 105 110Gly Tyr Ser Leu Arg Asn Ile Asp Asn Ala 115 120661125PRTOryctolagus cuniculus 661Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Leu Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Leu Ser 35 40 45Asn Tyr Tyr Val Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 50 55 60Trp Ile Gly Ile Ile Tyr Gly Ser Asp Glu Thr Ala Tyr Ala Thr Trp65 70 75 80Ala Ile Gly Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu 85 90 95Lys Met Thr Ser Leu Thr Ala Ala Asp Thr Ala Thr Tyr Phe Cys Ala 100 105 110Arg Asp Asp Ser Ser Asp Trp Asp Ala Lys Phe Asn Leu 115 120 125662366DNAOryctolagus cuniculus 662atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60agatgtgcct atgatatgac ccagactcca gcctcggtgt ctgcagctgt gggaggcaca 120gtcaccatca agtgccaggc cagtcagagc attaacaatg aattatcctg gtatcagcag 180aaaccagggc agcgtcccaa gctcctgatc tatagggcat ccactctggc atctggggtc 240tcatcgcggt tcaaaggcag tggatctggg acagagttca ctctcaccat cagcgacctg 300gagtgtgccg atgctgccac ttactactgt caacagggtt atagtctgag gaatattgat 360aatgct 366663375DNAOryctolagus cuniculus 663atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60tcgctggagg agtccggggg tcgcctggtc acgcctggga cacccctgac actcacctgc 120acagcctctg gattctccct cagtaactac tacgtgacct gggtccgcca ggctccaggg 180aaggggctgg aatggatcgg aatcatttat ggtagtgatg aaacggccta cgcgacctgg 240gcgataggcc gattcaccat ctccaaaacc tcgaccacgg tggatctgaa aatgaccagt 300ctgacagccg cggacacggc cacctatttc tgtgccagag atgatagtag tgactgggat 360gcaaaattta acttg 375664450PRTOryctolagus cuniculus 664Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Leu Ser Asn Tyr 20 25 30Tyr Val Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Ile Ile Tyr Gly Ser Asp Glu Thr Ala Tyr Ala Thr Trp Ala Ile 50 55 60Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu65 70 75 80Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95Arg Asp Asp Ser Ser Asp Trp Asp Ala Lys Phe Asn Leu Trp Gly Gln 100 105 110Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Pro Lys Ser Cys Asp 210 215 220Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly225 230 235 240Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Ala Ser Thr Tyr Arg 290 295 300Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys305 310 315 320Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu 325 330 335Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu 355 360 365Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val385 390 395 400Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445Gly Lys 450665450PRTOryctolagus cuniculus 665Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Leu Ser Asn Tyr 20 25 30Tyr Val Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Ile Ile Tyr Gly Ser Asp Glu Thr Ala Tyr Ala Thr Ser Ala Ile 50 55 60Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu65 70 75 80Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95Arg Asp Asp Ser Ser Asp Trp Asp Ala Lys Phe Asn Leu Trp Gly Gln 100 105 110Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Pro Lys Ser Cys Asp 210 215 220Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly225 230 235 240Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Ala Ser Thr Tyr Arg 290 295 300Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys305 310 315 320Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu 325 330 335Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu 355 360 365Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val385 390 395 400Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445Gly Lys 450666216PRTOryctolagus cuniculus 666Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp1 5 10 15Arg Val Thr Ile Thr Cys Gln Ala Ser Gln Ser Ile Asn Asn Glu Leu 20 25 30Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu

Leu Ile Tyr 35 40 45Arg Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly Ser 50 55 60Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Asp65 70 75 80Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Gly Tyr Ser Leu Arg Asn Ile 85 90 95Asp Asn Ala Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg Thr Val 100 105 110Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys 115 120 125Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg 130 135 140Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn145 150 155 160Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser 165 170 175Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys 180 185 190Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr 195 200 205Lys Ser Phe Asn Arg Gly Glu Cys 210 215667122PRTOryctolagus cuniculus 667Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Arg Cys Ala Tyr Asp Met Thr Gln Thr Pro Ala Ser 20 25 30Val Glu Val Ala Val Gly Gly Thr Val Thr Ile Asn Cys Gln Ala Ser 35 40 45Glu Thr Ile Tyr Ser Trp Leu Ser Trp Tyr Gln Gln Lys Pro Gly Gln 50 55 60Pro Pro Lys Leu Leu Ile Tyr Gln Ala Ser Asp Leu Ala Ser Gly Val65 70 75 80Pro Ser Arg Phe Ser Gly Ser Gly Ala Gly Thr Glu Tyr Thr Leu Thr 85 90 95Ile Ser Gly Val Gln Cys Asp Asp Ala Ala Thr Tyr Tyr Cys Gln Gln 100 105 110Gly Tyr Ser Gly Ser Asn Val Asp Asn Val 115 120668126PRTOryctolagus cuniculus 668Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Glu Gln Leu Lys Glu Ser Gly Gly Arg Leu Val Thr 20 25 30Pro Gly Thr Pro Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Leu 35 40 45Asn Asp His Ala Met Gly Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 50 55 60Glu Tyr Ile Gly Phe Ile Asn Ser Gly Gly Ser Ala Arg Tyr Ala Ser65 70 75 80Trp Ala Glu Gly Arg Phe Thr Ile Ser Arg Thr Ser Thr Thr Val Asp 85 90 95Leu Lys Met Thr Ser Leu Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys 100 105 110Val Arg Gly Gly Ala Val Trp Ser Ile His Ser Phe Asp Pro 115 120 125669366DNAOryctolagus cuniculus 669atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60agatgtgcct atgatatgac ccagactcca gcctctgtgg aggtagctgt gggaggcaca 120gtcaccatca attgccaggc cagtgagacc atttacagtt ggttatcctg gtatcagcag 180aagccagggc agcctcccaa gctcctgatc taccaggcat ccgatctggc atctggggtc 240ccatcgcgat tcagcggcag tggggctggg acagagtaca ctctcaccat cagcggcgtg 300cagtgtgacg atgctgccac ttactactgt caacagggtt atagtggtag taatgttgat 360aatgtt 366670378DNAOryctolagus cuniculus 670atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60gagcagctga aggagtccgg gggtcgcctg gtcacgcctg ggacacccct gacacttacc 120tgcacagcct ctggattctc cctcaatgac catgcaatgg gctgggtccg ccaggctcca 180gggaaggggc tggaatacat cggattcatt aatagtggtg gtagcgcacg ctacgcgagc 240tgggcagaag gccgattcac catctccaga acctcgacca cggtggatct gaaaatgacc 300agtctgacaa ccgaggacac ggccacctat ttctgtgtca gagggggtgc tgtttggagt 360attcatagtt ttgatccc 378671123PRTOryctolagus cuniculus 671Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Thr Phe Ala Ala Val Leu Thr Gln Thr Pro Ser Pro 20 25 30Val Ser Ala Ala Val Gly Gly Thr Val Ser Ile Ser Cys Gln Ala Ser 35 40 45Gln Ser Val Tyr Asp Asn Asn Tyr Leu Ser Trp Phe Gln Gln Lys Pro 50 55 60Gly Gln Pro Pro Lys Leu Leu Ile Tyr Gly Ala Ser Thr Leu Ala Ser65 70 75 80Gly Val Pro Ser Arg Phe Val Gly Ser Gly Ser Gly Thr Gln Phe Thr 85 90 95Leu Thr Ile Thr Asp Val Gln Cys Asp Asp Ala Ala Thr Tyr Tyr Cys 100 105 110Ala Gly Val Tyr Asp Asp Asp Ser Asp Asn Ala 115 120672125PRTOryctolagus cuniculus 672Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Leu Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Leu Ser 35 40 45Val Tyr Tyr Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 50 55 60Trp Ile Gly Phe Ile Thr Met Ser Asp Asn Ile Asn Tyr Ala Ser Trp65 70 75 80Ala Lys Gly Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu 85 90 95Lys Met Thr Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala 100 105 110Arg Ser Arg Gly Trp Gly Thr Met Gly Arg Leu Asp Leu 115 120 125673369DNAOryctolagus cuniculus 673atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60acatttgccg ccgtgctgac ccagactcca tctcccgtgt ctgcagctgt gggaggcaca 120gtcagcatca gttgccaggc cagtcagagt gtttatgaca acaactactt atcctggttt 180cagcagaaac cagggcagcc tcccaagctc ctgatctatg gtgcatccac tctggcatct 240ggggtcccat cgcggttcgt gggcagtgga tctgggacac agttcactct caccatcaca 300gacgtgcagt gtgacgatgc tgccacttac tattgtgcag gcgtttatga tgatgatagt 360gataatgcc 369674375DNAOryctolagus cuniculus 674atggagactg ggctgcgctg gcttctcctg gtggctgtgc tcaaaggtgt ccagtgtcag 60tcgctggagg agtccggggg tcgcctggtc acccctggga cacccctgac actcacctgc 120acagcctctg gattctccct cagtgtctac tacatgaact gggtccgcca ggctccaggg 180aaggggctgg aatggatcgg attcattaca atgagtgata atataaatta cgcgagctgg 240gcgaaaggcc gattcaccat ctccaaaacc tcgaccacgg tggatctgaa aatgaccagt 300ccgacaaccg aggacacggc cacctatttc tgtgccagga gtcgtggctg gggtacaatg 360ggtcggttgg atctc 375675123PRTOryctolagus cuniculus 675Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Ile Cys Asp Pro Val Leu Thr Gln Thr Pro Ser Pro 20 25 30Val Ser Ala Pro Val Gly Gly Thr Val Ser Ile Ser Cys Gln Ala Ser 35 40 45Gln Ser Val Tyr Glu Asn Asn Tyr Leu Ser Trp Phe Gln Gln Lys Pro 50 55 60Gly Gln Pro Pro Lys Leu Leu Ile Tyr Gly Ala Ser Thr Leu Asp Ser65 70 75 80Gly Val Pro Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Gln Phe Thr 85 90 95Leu Thr Ile Thr Asp Val Gln Cys Asp Asp Ala Ala Thr Tyr Tyr Cys 100 105 110Ala Gly Val Tyr Asp Asp Asp Ser Asp Asp Ala 115 120676126PRTOryctolagus cuniculus 676Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Glu Gln Leu Lys Glu Ser Gly Gly Gly Leu Val Thr 20 25 30Pro Gly Gly Thr Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Leu 35 40 45Asn Ala Tyr Tyr Met Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu 50 55 60Glu Trp Ile Gly Phe Ile Thr Leu Asn Asn Asn Val Ala Tyr Ala Asn65 70 75 80Trp Ala Lys Gly Arg Phe Thr Phe Ser Lys Thr Ser Thr Thr Val Asp 85 90 95Leu Lys Met Thr Ser Pro Thr Pro Glu Asp Thr Ala Thr Tyr Phe Cys 100 105 110Ala Arg Ser Arg Gly Trp Gly Ala Met Gly Arg Leu Asp Leu 115 120 125677369DNAOryctolagus cuniculus 677atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60atatgtgacc ctgtgctgac ccagactcca tctcccgtat ctgcacctgt gggaggcaca 120gtcagcatca gttgccaggc cagtcagagt gtttatgaga acaactattt atcctggttt 180cagcagaaac cagggcagcc tcccaagctc ctgatctatg gtgcatccac tctggattct 240ggggtcccat cgcggttcaa aggcagtgga tctgggacac agttcactct caccattaca 300gacgtgcagt gtgacgatgc tgccacttac tattgtgcag gcgtttatga tgatgatagt 360gatgatgcc 369678378DNAOryctolagus cuniculus 678atggagactg ggctgcgctg gcttctcctg gtggctgtgc tcaaaggtgt ccagtgtcag 60gagcagctga aggagtccgg aggaggcctg gtaacgcctg gaggaaccct gacactcacc 120tgcacagcct ctggattctc cctcaatgcc tactacatga actgggtccg ccaggctcca 180gggaaggggc tggaatggat cggattcatt actctgaata ataatgtagc ttacgcgaac 240tgggcgaaag gccgattcac cttctccaaa acctcgacca cggtggatct gaaaatgacc 300agtccgacac ccgaggacac ggccacctat ttctgtgcca ggagtcgtgg ctggggtgca 360atgggtcggt tggatctc 378679122PRTOryctolagus cuniculus 679Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Thr Phe Ala Gln Val Leu Thr Gln Thr Pro Ser Pro 20 25 30Val Ser Ala Ala Val Gly Gly Thr Val Thr Ile Asn Cys Gln Ala Ser 35 40 45Gln Ser Val Asp Asp Asn Asn Trp Leu Gly Trp Tyr Gln Gln Lys Arg 50 55 60Gly Gln Pro Pro Lys Tyr Leu Ile Tyr Ser Ala Ser Thr Leu Ala Ser65 70 75 80Gly Val Pro Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Gln Phe Thr 85 90 95Leu Thr Ile Ser Asp Leu Glu Cys Asp Asp Ala Ala Thr Tyr Tyr Cys 100 105 110Ala Gly Gly Phe Ser Gly Asn Ile Phe Ala 115 120680122PRTOryctolagus cuniculus 680Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu Thr Leu Thr Cys Thr Val Ser Gly Phe Ser Leu Ser 35 40 45Ser Tyr Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 50 55 60Trp Ile Gly Ile Ile Gly Gly Phe Gly Thr Thr Tyr Tyr Ala Thr Trp65 70 75 80Ala Lys Gly Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu 85 90 95Arg Ile Thr Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys Ala 100 105 110Arg Gly Gly Pro Gly Asn Gly Gly Asp Ile 115 120681366DNAOryctolagus cuniculus 681atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60acatttgccc aagtgctgac ccagactcca tcgcctgtgt ctgcagctgt gggaggcaca 120gtcaccatca actgccaggc cagtcagagt gttgatgata acaactggtt aggctggtat 180cagcagaaac gagggcagcc tcccaagtac ctgatctatt ctgcatccac tctggcatct 240ggggtcccat cgcggttcaa aggcagtgga tctgggacac agttcactct caccatcagc 300gacctggagt gtgacgatgc tgccacttac tactgtgcag gcggttttag tggtaatatc 360tttgct 366682366DNAOryctolagus cuniculus 682atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60tcggtggagg agtccggggg tcgcctggtc acgcctggga cacccctgac actcacctgc 120acagtctctg gcttctccct cagtagctat gcaatgagct gggtccgcca ggctccagga 180aaggggctgg agtggatcgg aatcattggt ggttttggta ccacatacta cgcgacctgg 240gcgaaaggcc gattcaccat ctccaaaacc tcgaccacgg tggatctgag aatcaccagt 300ccgacaaccg aggacacggc cacctatttc tgtgccagag gtggtcctgg taatggtggt 360gacatc 366683122PRTOryctolagus cuniculus 683Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Thr Phe Ala Ala Val Leu Thr Gln Thr Pro Ser Pro 20 25 30Val Ser Val Pro Val Gly Gly Thr Val Thr Ile Lys Cys Gln Ser Ser 35 40 45Gln Ser Val Tyr Asn Asn Phe Leu Ser Trp Tyr Gln Gln Lys Pro Gly 50 55 60Gln Pro Pro Lys Leu Leu Ile Tyr Gln Ala Ser Lys Leu Ala Ser Gly65 70 75 80Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Gln Phe Thr Leu 85 90 95Thr Ile Ser Gly Val Gln Cys Asp Asp Ala Ala Thr Tyr Tyr Cys Leu 100 105 110Gly Gly Tyr Asp Asp Asp Ala Asp Asn Ala 115 120684128PRTOryctolagus cuniculus 684Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Lys Gly1 5 10 15Val Gln Cys Gln Ser Val Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu Thr Leu Thr Cys Thr Val Ser Gly Ile Asp Leu Ser 35 40 45Asp Tyr Ala Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 50 55 60Trp Ile Gly Ile Ile Tyr Ala Gly Ser Gly Ser Thr Trp Tyr Ala Ser65 70 75 80Trp Ala Lys Gly Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp 85 90 95Leu Lys Ile Thr Ser Pro Thr Thr Glu Asp Thr Ala Thr Tyr Phe Cys 100 105 110Ala Arg Asp Gly Tyr Asp Asp Tyr Gly Asp Phe Asp Arg Leu Asp Leu 115 120 125685366DNAOryctolagus cuniculus 685atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc 60acatttgcag ccgtgctgac ccagacacca tcgcccgtgt ctgtacctgt gggaggcaca 120gtcaccatca agtgccagtc cagtcagagt gtttataata atttcttatc gtggtatcag 180cagaaaccag ggcagcctcc caagctcctg atctaccagg catccaaact ggcatctggg 240gtcccagata ggttcagcgg cagtggatct gggacacagt tcactctcac catcagcggc 300gtgcagtgtg acgatgctgc cacttactac tgtctaggcg gttatgatga tgatgctgat 360aatgct 366686384DNAOryctolagus cuniculus 686atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tcaaaggtgt ccagtgtcag 60tcggtggagg agtccggggg tcgcctggtc acgcctggga cacccctgac gctcacctgc 120acagtctctg gaatcgacct cagtgactat gcaatgagct gggtccgcca ggctccaggg 180aaggggctgg aatggatcgg aatcatttat gctggtagtg gtagcacatg gtacgcgagc 240tgggcgaaag gccgattcac catctccaaa acctcgacca cggtggatct gaaaatcacc 300agtccgacaa ccgaggacac ggccacctat ttctgtgcca gagatggata cgatgactat 360ggtgatttcg atcgattgga tctc 384687122PRTOryctolagus cuniculus 687Met Asp Thr Arg Ala Pro Thr Gln Leu Leu Gly Leu Leu Leu Leu Trp1 5 10 15Leu Pro Gly Ala Arg Cys Ala Tyr Asp Met Thr Gln Thr Pro Ala Ser 20 25 30Val Ser Ala Ala Val Gly Gly Thr Val Thr Ile Lys Cys Gln Ala Ser 35 40 45Gln Ser Ile Asn Asn Glu Leu Ser Trp Tyr Gln Gln Lys Ser Gly Gln 50 55 60Arg Pro Lys Leu Leu Ile Tyr Arg Ala Ser Thr Leu Ala Ser Gly Val65 70 75 80Ser Ser Arg Phe Lys Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr 85 90 95Ile Ser Asp Leu Glu Cys Ala Asp Ala Ala Thr Tyr Tyr Cys Gln Gln 100 105 110Gly Tyr Ser Leu Arg Asn Ile Asp Asn Ala 115 120688125PRTOryctolagus cuniculus 688Met Glu Thr Gly Leu Arg Trp Leu Leu Leu Val Ala Val Leu Ser Gly1 5 10 15Val Gln Cys Gln Ser Leu Glu Glu Ser Gly Gly Arg Leu Val Thr Pro 20 25 30Gly Thr Pro Leu Thr Leu Thr Cys Thr Ala Ser Gly Phe Ser Leu Ser 35 40 45Asn Tyr Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 50 55 60Trp Ile Gly Met Ile Tyr Gly Ser Asp Glu Thr Ala Tyr Ala Asn Trp65 70 75 80Ala Ile Gly Arg Phe Thr Ile Ser Lys Thr Ser Thr Thr Val Asp Leu 85 90 95Lys Met Thr Ser Leu Thr Ala Ala Asp Thr Ala Thr Tyr Phe Cys Ala 100 105 110Arg Asp Asp Ser Ser Asp Trp Asp Ala Lys Phe Asn Leu 115 120 125689366DNAOryctolagus cuniculus 689atggacacga gggcccccac tcagctgctg gggctcctgc tgctctggct cccaggtgcc

60agatgtgcct atgatatgac ccagactcca gcctcggtgt ctgcagctgt gggaggcaca 120gtcaccatca aatgccaggc cagtcagagc attaacaatg aattatcctg gtatcagcag 180aaatcagggc agcgtcccaa gctcctgatc tatagggcat ccactctggc atctggggtc 240tcatcgcggt tcaaaggcag tggatctggg acagagttca ctctcaccat cagcgacctg 300gagtgtgccg atgctgccac ttactactgt caacagggtt atagtctgag gaatattgat 360aatgct 366690375DNAOryctolagus cuniculus 690atggagactg ggctgcgctg gcttctcctg gtcgctgtgc tctcaggtgt ccagtgtcag 60tcgctggagg agtccggggg tcgcctggtc acgcctggga cacccctgac actcacctgc 120acagcctctg gattctccct cagtaactac tacatgacct gggtccgcca ggctccaggg 180aaggggctgg aatggatcgg aatgatttat ggtagtgatg aaacagccta cgcgaactgg 240gcgataggcc gattcaccat ctccaaaacc tcgaccacgg tggatctgaa aatgaccagt 300ctgacagccg cggacacggc cacctatttc tgtgccagag atgatagtag tgactgggat 360gcaaaattta acttg 375691450PRTOryctolagus cuniculus 691Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Leu Ser Asn Tyr 20 25 30Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Met Ile Tyr Gly Ser Asp Glu Thr Ala Tyr Ala Asn Trp Ala Ile 50 55 60Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu65 70 75 80Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95Arg Asp Asp Ser Ser Asp Trp Asp Ala Lys Phe Asn Leu Trp Gly Gln 100 105 110Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Pro Lys Ser Cys Asp 210 215 220Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly225 230 235 240Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Ala Ser Thr Tyr Arg 290 295 300Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys305 310 315 320Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu 325 330 335Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu 355 360 365Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val385 390 395 400Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445Gly Lys 450692450PRTOryctolagus cuniculus 692Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Leu Ser Asn Tyr 20 25 30Tyr Met Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Met Ile Tyr Gly Ser Asp Glu Thr Ala Tyr Ala Asn Ser Ala Ile 50 55 60Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu65 70 75 80Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95Arg Asp Asp Ser Ser Asp Trp Asp Ala Lys Phe Asn Leu Trp Gly Gln 100 105 110Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Pro Lys Ser Cys Asp 210 215 220Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly225 230 235 240Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Ala Ser Thr Tyr Arg 290 295 300Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys305 310 315 320Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu 325 330 335Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu 355 360 365Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val385 390 395 400Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445Gly Lys 450693217PRTOryctolagus cuniculus 693Asp Ile Gln Met Thr Gln Ser Pro Ser Thr Leu Ser Ala Ser Val Gly1 5 10 15Asp Arg Val Thr Ile Thr Cys Gln Ala Ser Gln Ser Ile Asn Asn Glu 20 25 30Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45Tyr Arg Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65 70 75 80Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Gly Tyr Ser Leu Arg Asn 85 90 95Ile Asp Asn Ala Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg Thr 100 105 110Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu 115 120 125Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro 130 135 140Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly145 150 155 160Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr 165 170 175Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His 180 185 190Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val 195 200 205Thr Lys Ser Phe Asn Arg Gly Glu Cys 210 21569433DNAOryctolagus cuniculus 694caggccagtc agagcattaa caatgagtta tcc 3369536DNAOryctolagus cuniculus 695caacagggtt atagtctgag gaacattgat aatgct 3669648DNAOryctolagus cuniculus 696atcatctatg gtagtgatga aaccgcctac gctacctccg ctataggc 4869736DNAOryctolagus cuniculus 697gatgatagta gtgactggga tgcaaagttc aacttg 36698336DNAOryctolagus cuniculus 698gctatccaga tgacccagtc tccttcctcc ctgtctgcat ctgtaggaga cagagtcacc 60atcacttgcc aggccagtca gagcattaac aatgagttat cctggtatca gcagaaacca 120gggaaagccc ctaagctcct gatctatagg gcatccactc tggcatctgg ggtcccatca 180aggttcagcg gcagtggatc tgggacagac ttcactctca ccatcagcag cctgcagcct 240gatgattttg caacttatta ctgccaacag ggttatagtc tgaggaacat tgataatgct 300ttcggcggag ggaccaaggt ggaaatcaaa cgtacg 336699112PRTOryctolagus cuniculus 699Ala Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1 5 10 15Asp Arg Val Thr Ile Thr Cys Gln Ala Ser Gln Ser Ile Asn Asn Glu 20 25 30Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45Tyr Arg Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65 70 75 80Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Gly Tyr Ser Leu Arg Asn 85 90 95Ile Asp Asn Ala Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg Thr 100 105 110700360DNAOryctolagus cuniculus 700gaggtgcagc tggtggagtc tgggggaggc ttggtccagc ctggggggtc cctgagactc 60tcctgtgcag cctctggatt ctccctcagt aactactacg tgacctgggt ccgtcaggct 120ccagggaagg ggctggagtg ggtcggcatc atctatggta gtgatgaaac cgcctacgct 180acctccgcta taggccgatt caccatctcc agagacaatt ccaagaacac cctgtatctt 240caaatgaaca gcctgagagc tgaggacact gctgtgtatt actgtgctag agatgatagt 300agtgactggg atgcaaagtt caacttgtgg ggccaaggga ccctcgtcac cgtctcgagc 360701651DNAOryctolagus cuniculus 701gctatccaga tgacccagtc tccttcctcc ctgtctgcat ctgtaggaga cagagtcacc 60atcacttgcc aggccagtca gagcattaac aatgagttat cctggtatca gcagaaacca 120gggaaagccc ctaagctcct gatctatagg gcatccactc tggcatctgg ggtcccatca 180aggttcagcg gcagtggatc tgggacagac ttcactctca ccatcagcag cctgcagcct 240gatgattttg caacttatta ctgccaacag ggttatagtc tgaggaacat tgataatgct 300ttcggcggag ggaccaaggt ggaaatcaaa cgtacggtgg ctgcaccatc tgtcttcatc 360ttcccgccat ctgatgagca gttgaaatct ggaactgcct ctgttgtgtg cctgctgaat 420aacttctatc ccagagaggc caaagtacag tggaaggtgg ataacgccct ccaatcgggt 480aactcccagg agagtgtcac agagcaggac agcaaggaca gcacctacag cctcagcagc 540accctgacgc tgagcaaagc agactacgag aaacacaaag tctacgcctg cgaagtcacc 600catcagggcc tgagctcgcc cgtcacaaag agcttcaaca ggggagagtg t 651702217PRTOryctolagus cuniculus 702Ala Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1 5 10 15Asp Arg Val Thr Ile Thr Cys Gln Ala Ser Gln Ser Ile Asn Asn Glu 20 25 30Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45Tyr Arg Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65 70 75 80Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Gly Tyr Ser Leu Arg Asn 85 90 95Ile Asp Asn Ala Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg Thr 100 105 110Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu 115 120 125Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro 130 135 140Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly145 150 155 160Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr 165 170 175Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His 180 185 190Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val 195 200 205Thr Lys Ser Phe Asn Arg Gly Glu Cys 210 2157031350DNAOryctolagus cuniculus 703gaggtgcagc tggtggagtc tgggggaggc ttggtccagc ctggggggtc cctgagactc 60tcctgtgcag cctctggatt ctccctcagt aactactacg tgacctgggt ccgtcaggct 120ccagggaagg ggctggagtg ggtcggcatc atctatggta gtgatgaaac cgcctacgct 180acctccgcta taggccgatt caccatctcc agagacaatt ccaagaacac cctgtatctt 240caaatgaaca gcctgagagc tgaggacact gctgtgtatt actgtgctag agatgatagt 300agtgactggg atgcaaagtt caacttgtgg ggccaaggga ccctcgtcac cgtctcgagc 360gcctccacca agggcccatc ggtcttcccc ctggcaccct cctccaagag cacctctggg 420ggcacagcgg ccctgggctg cctggtcaag gactacttcc ccgaaccggt gacggtgtcg 480tggaactcag gcgccctgac cagcggcgtg cacaccttcc cggctgtcct acagtcctca 540ggactctact ccctcagcag cgtggtgacc gtgccctcca gcagcttggg cacccagacc 600tacatctgca acgtgaatca caagcccagc aacaccaagg tggacaagag agttgagccc 660aaatcttgtg acaaaactca cacatgccca ccgtgcccag cacctgaact cctgggggga 720ccgtcagtct tcctcttccc cccaaaaccc aaggacaccc tcatgatctc ccggacccct 780gaggtcacat gcgtggtggt ggacgtgagc cacgaagacc ctgaggtcaa gttcaactgg 840tacgtggacg gcgtggaggt gcataatgcc aagacaaagc cgcgggagga gcagtacgcc 900agcacgtacc gtgtggtcag cgtcctcacc gtcctgcacc aggactggct gaatggcaag 960gagtacaagt gcaaggtctc caacaaagcc ctcccagccc ccatcgagaa aaccatctcc 1020aaagccaaag ggcagccccg agaaccacag gtgtacaccc tgcccccatc ccgggaggag 1080atgaccaaga accaggtcag cctgacctgc ctggtcaaag gcttctatcc cagcgacatc 1140gccgtggagt gggagagcaa tgggcagccg gagaacaact acaagaccac gcctcccgtg 1200ctggactccg acggctcctt cttcctctac agcaagctca ccgtggacaa gagcaggtgg 1260cagcagggga acgtcttctc atgctccgtg atgcatgagg ctctgcacaa ccactacacg 1320cagaagagcc tctccctgtc tccgggtaaa 1350704450PRTOryctolagus cuniculus 704Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Leu Ser Asn Tyr 20 25 30Tyr Val Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly Ile Ile Tyr Gly Ser Asp Glu Thr Ala Tyr Ala Thr Ser Ala Ile 50 55 60Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu65 70 75 80Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95Arg Asp Asp Ser Ser Asp Trp Asp Ala Lys Phe Asn Leu Trp Gly Gln 100 105 110Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Pro Lys Ser Cys Asp 210 215 220Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly225 230 235 240Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Ala Ser Thr Tyr Arg 290 295 300Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys305 310 315 320Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu 325 330

335Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 355 360 365Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val385 390 395 400Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445Gly Lys 450705705DNAOryctolagus cuniculus 705atgaagtggg taacctttat ttcccttctg tttctcttta gcagcgctta ttccgctatc 60cagatgaccc agtctccttc ctccctgtct gcatctgtag gagacagagt caccatcact 120tgccaggcca gtcagagcat taacaatgag ttatcctggt atcagcagaa accagggaaa 180gcccctaagc tcctgatcta tagggcatcc actctggcat ctggggtccc atcaaggttc 240agcggcagtg gatctgggac agacttcact ctcaccatca gcagcctgca gcctgatgat 300tttgcaactt attactgcca acagggttat agtctgagga acattgataa tgctttcggc 360ggagggacca aggtggaaat caaacgtacg gtggctgcac catctgtctt catcttcccg 420ccatctgatg agcagttgaa atctggaact gcctctgttg tgtgcctgct gaataacttc 480tatcccagag aggccaaagt acagtggaag gtggataacg ccctccaatc gggtaactcc 540caggagagtg tcacagagca ggacagcaag gacagcacct acagcctcag cagcaccctg 600acgctgagca aagcagacta cgagaaacac aaagtctacg cctgcgaagt cacccatcag 660ggcctgagct cgcccgtcac aaagagcttc aacaggggag agtgt 705706235PRTOryctolagus cuniculus 706Met Lys Trp Val Thr Phe Ile Ser Leu Leu Phe Leu Phe Ser Ser Ala1 5 10 15Tyr Ser Ala Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser 20 25 30Val Gly Asp Arg Val Thr Ile Thr Cys Gln Ala Ser Gln Ser Ile Asn 35 40 45Asn Glu Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu 50 55 60Leu Ile Tyr Arg Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe65 70 75 80Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu 85 90 95Gln Pro Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Gly Tyr Ser Leu 100 105 110Arg Asn Ile Asp Asn Ala Phe Gly Gly Gly Thr Lys Val Glu Ile Lys 115 120 125Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu 130 135 140Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe145 150 155 160Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln 165 170 175Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser 180 185 190Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu 195 200 205Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser 210 215 220Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys225 230 2357071404DNAOryctolagus cuniculus 707atgaagtggg taacctttat ttcccttctg tttctcttta gcagcgctta ttccgaggtg 60cagctggtgg agtctggggg aggcttggtc cagcctgggg ggtccctgag actctcctgt 120gcagcctctg gattctccct cagtaactac tacgtgacct gggtccgtca ggctccaggg 180aaggggctgg agtgggtcgg catcatctat ggtagtgatg aaaccgccta cgctacctcc 240gctataggcc gattcaccat ctccagagac aattccaaga acaccctgta tcttcaaatg 300aacagcctga gagctgagga cactgctgtg tattactgtg ctagagatga tagtagtgac 360tgggatgcaa agttcaactt gtggggccaa gggaccctcg tcaccgtctc gagcgcctcc 420accaagggcc catcggtctt ccccctggca ccctcctcca agagcacctc tgggggcaca 480gcggccctgg gctgcctggt caaggactac ttccccgaac cggtgacggt gtcgtggaac 540tcaggcgccc tgaccagcgg cgtgcacacc ttcccggctg tcctacagtc ctcaggactc 600tactccctca gcagcgtggt gaccgtgccc tccagcagct tgggcaccca gacctacatc 660tgcaacgtga atcacaagcc cagcaacacc aaggtggaca agagagttga gcccaaatct 720tgtgacaaaa ctcacacatg cccaccgtgc ccagcacctg aactcctggg gggaccgtca 780gtcttcctct tccccccaaa acccaaggac accctcatga tctcccggac ccctgaggtc 840acatgcgtgg tggtggacgt gagccacgaa gaccctgagg tcaagttcaa ctggtacgtg 900gacggcgtgg aggtgcataa tgccaagaca aagccgcggg aggagcagta cgccagcacg 960taccgtgtgg tcagcgtcct caccgtcctg caccaggact ggctgaatgg caaggagtac 1020aagtgcaagg tctccaacaa agccctccca gcccccatcg agaaaaccat ctccaaagcc 1080aaagggcagc cccgagaacc acaggtgtac accctgcccc catcccggga ggagatgacc 1140aagaaccagg tcagcctgac ctgcctggtc aaaggcttct atcccagcga catcgccgtg 1200gagtgggaga gcaatgggca gccggagaac aactacaaga ccacgcctcc cgtgctggac 1260tccgacggct ccttcttcct ctacagcaag ctcaccgtgg acaagagcag gtggcagcag 1320gggaacgtct tctcatgctc cgtgatgcat gaggctctgc acaaccacta cacgcagaag 1380agcctctccc tgtctccggg taaa 1404708468PRTOryctolagus cuniculus 708Met Lys Trp Val Thr Phe Ile Ser Leu Leu Phe Leu Phe Ser Ser Ala1 5 10 15Tyr Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro 20 25 30Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Leu Ser 35 40 45Asn Tyr Tyr Val Thr Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu 50 55 60Trp Val Gly Ile Ile Tyr Gly Ser Asp Glu Thr Ala Tyr Ala Thr Ser65 70 75 80Ala Ile Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu 85 90 95Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 100 105 110Cys Ala Arg Asp Asp Ser Ser Asp Trp Asp Ala Lys Phe Asn Leu Trp 115 120 125Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro 130 135 140Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr145 150 155 160Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr 165 170 175Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro 180 185 190Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr 195 200 205Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn 210 215 220His Lys Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Pro Lys Ser225 230 235 240Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu 245 250 255Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu 260 265 270Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser 275 280 285His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu 290 295 300Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Ala Ser Thr305 310 315 320Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn 325 330 335Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro 340 345 350Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln 355 360 365Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val 370 375 380Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val385 390 395 400Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro 405 410 415Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr 420 425 430Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val 435 440 445Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 450 455 460Ser Pro Gly Lys465709111PRTOryctolagus cuniculus 709Ala Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1 5 10 15Asp Arg Val Thr Ile Thr Cys Gln Ala Ser Gln Ser Ile Asn Asn Glu 20 25 30Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45Tyr Arg Ala Ser Thr Leu Ala Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65 70 75 80Asp Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Gly Tyr Ser Leu Arg Asn 85 90 95Ile Asp Asn Ala Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg 100 105 11071011PRTHomo sapiens 710Arg Ala Ser Gln Gly Ile Arg Asn Asp Leu Gly1 5 1071111PRTHomo sapiens 711Arg Ala Ser Gln Gly Ile Ser Asn Tyr Leu Ala1 5 1071211PRTHomo sapiens 712Arg Ala Ser Gln Ser Ile Ser Ser Trp Leu Ala1 5 107137PRTHomo sapiens 713Ala Ala Ser Ser Leu Gln Ser1 57147PRTHomo sapiens 714Ala Ala Ser Thr Leu Gln Ser1 57157PRTHomo sapiens 715Lys Ala Ser Ser Leu Glu Ser1 57165PRTHomo sapiens 716Ser Asn Tyr Met Ser1 571716PRTHomo sapiens 717Val Ile Tyr Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val Lys Gly1 5 10 1571817PRTHomo sapiens 718Val Ile Tyr Ser Gly Gly Ser Ser Thr Tyr Tyr Ala Asp Ser Val Lys1 5 10 15Gly719330PRTArtificial SequenceGamma-1 constant domain 719Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys1 5 10 15Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr65 70 75 80Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys 85 90 95Arg Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys 100 105 110Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro 115 120 125Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys 130 135 140Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp145 150 155 160Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu 165 170 175Glu Gln Tyr Ala Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu 180 185 190His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn 195 200 205Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly 210 215 220Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu225 230 235 240Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr 245 250 255Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn 260 265 270Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 275 280 285Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn 290 295 300Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr305 310 315 320Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 325 330720297DNAOryctolagus cuniculus 720atccagatga cccagtctcc ttcctccctg tctgcatctg taggagacag agtcaccatc 60acttgccagg ccagtcagag cattaacaat gagttatcct ggtatcagca gaaaccaggg 120aaagccccta agctcctgat ctatagggca tccactctgg catctggggt cccatcaagg 180ttcagcggca gtggatctgg gacagacttc actctcacca tcagcagcct gcagcctgat 240gattttgcaa cttattactg ccaacagggt tatagtctga ggaacattga taatgct 297721333DNAOryctolagus cuniculus 721gcctatgata tgacccagac tccagcctcg gtgtctgcag ctgtgggagg cacagtcacc 60atcaagtgcc aggccagtca gagcattaac aatgaattat cctggtatca gcagaaacca 120gggcagcgtc ccaagctcct gatctatagg gcatccactc tggcatctgg ggtctcatcg 180cggttcaaag gcagtggatc tgggacagag ttcactctca ccatcagcga cctggagtgt 240gccgatgctg ccacttacta ctgtcaacag ggttatagtc tgaggaatat tgataatgct 300ttcggcggag ggaccgaggt ggtggtcaaa cgt 333722648DNAOryctolagus cuniculus 722atccagatga cccagtctcc ttcctccctg tctgcatctg taggagacag agtcaccatc 60acttgccagg ccagtcagag cattaacaat gagttatcct ggtatcagca gaaaccaggg 120aaagccccta agctcctgat ctatagggca tccactctgg catctggggt cccatcaagg 180ttcagcggca gtggatctgg gacagacttc actctcacca tcagcagcct gcagcctgat 240gattttgcaa cttattactg ccaacagggt tatagtctga ggaacattga taatgctttc 300ggcggaggga ccaaggtgga aatcaaacgt acggtggctg caccatctgt cttcatcttc 360ccgccatctg atgagcagtt gaaatctgga actgcctctg ttgtgtgcct gctgaataac 420ttctatccca gagaggccaa agtacagtgg aaggtggata acgccctcca atcgggtaac 480tcccaggaga gtgtcacaga gcaggacagc aaggacagca cctacagcct cagcagcacc 540ctgacgctga gcaaagcaga ctacgagaaa cacaaagtct acgcctgcga agtcacccat 600cagggcctga gctcgcccgt cacaaagagc ttcaacaggg gagagtgt 648723333DNAOryctolagus cuniculus 723gctatccaga tgacccagtc tccttcctcc ctgtctgcat ctgtaggaga cagagtcacc 60atcacttgcc aggccagtca gagcattaac aatgagttat cctggtatca gcagaaacca 120gggaaagccc ctaagctcct gatctatagg gcatccactc tggcatctgg ggtcccatca 180aggttcagcg gcagtggatc tgggacagac ttcactctca ccatcagcag cctgcagcct 240gatgattttg caacttatta ctgccaacag ggttatagtc tgaggaacat tgataatgct 300ttcggcggag ggaccaaggt ggaaatcaaa cgt 333724327DNAOryctolagus cuniculus 724gaggtgcagc tggtggagtc tgggggaggc ttggtccagc ctggggggtc cctgagactc 60tcctgtgcag cctctggatt ctccctcagt aactactacg tgacctgggt ccgtcaggct 120ccagggaagg ggctggagtg ggtcggcatc atctatggta gtgatgaaac cgcctacgct 180acctccgcta taggccgatt caccatctcc agagacaatt ccaagaacac cctgtatctt 240caaatgaaca gcctgagagc tgaggacact gctgtgtatt actgtgctag agatgatagt 300agtgactggg atgcaaagtt caacttg 327725351DNAOryctolagus cuniculus 725cagtcgctgg aggagtccgg gggtcgcctg gtcacgcctg ggacacccct gacactcacc 60tgcacagcct ctggattctc cctcagtaac tactacgtga cctgggtccg ccaggctcca 120gggaaggggc tggaatggat cggaatcatt tatggtagtg atgaaacggc ctacgcgacc 180tgggcgatag gccgattcac catctccaaa acctcgacca cggtggatct gaaaatgacc 240agtctgacag ccgcggacac ggccacctat ttctgtgcca gagatgatag tagtgactgg 300gatgcaaaat ttaacttgtg gggccaaggc accctggtca ccgtctcgag c 351726224PRTHomo sapiens 726Met Glu Lys Leu Leu Cys Phe Leu Val Leu Thr Ser Leu Ser His Ala1 5 10 15Phe Gly Gln Thr Asp Met Ser Arg Lys Ala Phe Val Phe Pro Lys Glu 20 25 30Ser Asp Thr Ser Tyr Val Ser Leu Lys Ala Pro Leu Thr Lys Pro Leu 35 40 45Lys Ala Phe Thr Val Cys Leu His Phe Tyr Thr Glu Leu Ser Ser Thr 50 55 60Arg Gly Tyr Ser Ile Phe Ser Tyr Ala Thr Lys Arg Gln Asp Asn Glu65 70 75 80Ile Leu Ile Phe Trp Ser Lys Asp Ile Gly Tyr Ser Phe Thr Val Gly 85 90 95Gly Ser Glu Ile Leu Phe Glu Val Pro Glu Val Thr Val Ala Pro Val 100 105 110His Ile Cys Thr Ser Trp Glu Ser Ala Ser Gly Ile Val Glu Phe Trp 115 120 125Val Asp Gly Lys Pro Arg Val Arg Lys Ser Leu Lys Lys Gly Tyr Thr 130 135 140Val Gly Ala Glu Ala Ser Ile Ile Leu Gly Gln Glu Gln Asp Ser Phe145 150 155 160Gly Gly Asn Phe Glu Gly Ser Gln Ser Leu Val Gly Asp Ile Gly Asn 165 170 175Val Asn Met Trp Asp Phe Val Leu Ser Pro Asp Glu Ile Asn Thr Ile 180 185 190Tyr Leu Gly Gly Pro Phe Ser Pro Asn Val Leu Asn Trp Arg Ala Leu 195 200 205Lys Tyr Glu Val Gln Gly Glu Val Phe Thr Lys Pro Gln Leu Trp Pro 210 215 220727468PRTHomo sapiens 727Met Leu Ala Val Gly Cys Ala Leu Leu Ala Ala Leu Leu Ala Ala Pro1 5 10 15Gly Ala Ala Leu Ala Pro Arg Arg Cys Pro Ala Gln Glu Val Ala Arg 20 25 30Gly Val Leu Thr Ser Leu Pro Gly Asp Ser Val Thr Leu Thr Cys Pro 35 40 45Gly Val Glu Pro Glu Asp Asn Ala Thr Val His Trp Val Leu Arg Lys 50 55 60Pro Ala Ala Gly Ser His

Pro Ser Arg Trp Ala Gly Met Gly Arg Arg65 70 75 80Leu Leu Leu Arg Ser Val Gln Leu His Asp Ser Gly Asn Tyr Ser Cys 85 90 95Tyr Arg Ala Gly Arg Pro Ala Gly Thr Val His Leu Leu Val Asp Val 100 105 110Pro Pro Glu Glu Pro Gln Leu Ser Cys Phe Arg Lys Ser Pro Leu Ser 115 120 125Asn Val Val Cys Glu Trp Gly Pro Arg Ser Thr Pro Ser Leu Thr Thr 130 135 140Lys Ala Val Leu Leu Val Arg Lys Phe Gln Asn Ser Pro Ala Glu Asp145 150 155 160Phe Gln Glu Pro Cys Gln Tyr Ser Gln Glu Ser Gln Lys Phe Ser Cys 165 170 175Gln Leu Ala Val Pro Glu Gly Asp Ser Ser Phe Tyr Ile Val Ser Met 180 185 190Cys Val Ala Ser Ser Val Gly Ser Lys Phe Ser Lys Thr Gln Thr Phe 195 200 205Gln Gly Cys Gly Ile Leu Gln Pro Asp Pro Pro Ala Asn Ile Thr Val 210 215 220Thr Ala Val Ala Arg Asn Pro Arg Trp Leu Ser Val Thr Trp Gln Asp225 230 235 240Pro His Ser Trp Asn Ser Ser Phe Tyr Arg Leu Arg Phe Glu Leu Arg 245 250 255Tyr Arg Ala Glu Arg Ser Lys Thr Phe Thr Thr Trp Met Val Lys Asp 260 265 270Leu Gln His His Cys Val Ile His Asp Ala Trp Ser Gly Leu Arg His 275 280 285Val Val Gln Leu Arg Ala Gln Glu Glu Phe Gly Gln Gly Glu Trp Ser 290 295 300Glu Trp Ser Pro Glu Ala Met Gly Thr Pro Trp Thr Glu Ser Arg Ser305 310 315 320Pro Pro Ala Glu Asn Glu Val Ser Thr Pro Met Gln Ala Leu Thr Thr 325 330 335Asn Lys Asp Asp Asp Asn Ile Leu Phe Arg Asp Ser Ala Asn Ala Thr 340 345 350Ser Leu Pro Val Gln Asp Ser Ser Ser Val Pro Leu Pro Thr Phe Leu 355 360 365Val Ala Gly Gly Ser Leu Ala Phe Gly Thr Leu Leu Cys Ile Ala Ile 370 375 380Val Leu Arg Phe Lys Lys Thr Trp Lys Leu Arg Ala Leu Lys Glu Gly385 390 395 400Lys Thr Ser Met His Pro Pro Tyr Ser Leu Gly Gln Leu Val Pro Glu 405 410 415Arg Pro Arg Pro Thr Pro Val Leu Val Pro Leu Ile Ser Pro Pro Val 420 425 430Ser Pro Ser Ser Leu Gly Ser Asp Asn Thr Ser Ser His Asn Arg Pro 435 440 445Asp Ala Arg Asp Pro Arg Ser Pro Tyr Asp Ile Ser Asn Thr Asp Tyr 450 455 460Phe Phe Pro Arg465728918PRTHomo sapiens 728Met Leu Thr Leu Gln Thr Trp Val Val Gln Ala Leu Phe Ile Phe Leu1 5 10 15Thr Thr Glu Ser Thr Gly Glu Leu Leu Asp Pro Cys Gly Tyr Ile Ser 20 25 30Pro Glu Ser Pro Val Val Gln Leu His Ser Asn Phe Thr Ala Val Cys 35 40 45Val Leu Lys Glu Lys Cys Met Asp Tyr Phe His Val Asn Ala Asn Tyr 50 55 60Ile Val Trp Lys Thr Asn His Phe Thr Ile Pro Lys Glu Gln Tyr Thr65 70 75 80Ile Ile Asn Arg Thr Ala Ser Ser Val Thr Phe Thr Asp Ile Ala Ser 85 90 95Leu Asn Ile Gln Leu Thr Cys Asn Ile Leu Thr Phe Gly Gln Leu Glu 100 105 110Gln Asn Val Tyr Gly Ile Thr Ile Ile Ser Gly Leu Pro Pro Glu Lys 115 120 125Pro Lys Asn Leu Ser Cys Ile Val Asn Glu Gly Lys Lys Met Arg Cys 130 135 140Glu Trp Asp Gly Gly Arg Glu Thr His Leu Glu Thr Asn Phe Thr Leu145 150 155 160Lys Ser Glu Trp Ala Thr His Lys Phe Ala Asp Cys Lys Ala Lys Arg 165 170 175Asp Thr Pro Thr Ser Cys Thr Val Asp Tyr Ser Thr Val Tyr Phe Val 180 185 190Asn Ile Glu Val Trp Val Glu Ala Glu Asn Ala Leu Gly Lys Val Thr 195 200 205Ser Asp His Ile Asn Phe Asp Pro Val Tyr Lys Val Lys Pro Asn Pro 210 215 220Pro His Asn Leu Ser Val Ile Asn Ser Glu Glu Leu Ser Ser Ile Leu225 230 235 240Lys Leu Thr Trp Thr Asn Pro Ser Ile Lys Ser Val Ile Ile Leu Lys 245 250 255Tyr Asn Ile Gln Tyr Arg Thr Lys Asp Ala Ser Thr Trp Ser Gln Ile 260 265 270Pro Pro Glu Asp Thr Ala Ser Thr Arg Ser Ser Phe Thr Val Gln Asp 275 280 285Leu Lys Pro Phe Thr Glu Tyr Val Phe Arg Ile Arg Cys Met Lys Glu 290 295 300Asp Gly Lys Gly Tyr Trp Ser Asp Trp Ser Glu Glu Ala Ser Gly Ile305 310 315 320Thr Tyr Glu Asp Arg Pro Ser Lys Ala Pro Ser Phe Trp Tyr Lys Ile 325 330 335Asp Pro Ser His Thr Gln Gly Tyr Arg Thr Val Gln Leu Val Trp Lys 340 345 350Thr Leu Pro Pro Phe Glu Ala Asn Gly Lys Ile Leu Asp Tyr Glu Val 355 360 365Thr Leu Thr Arg Trp Lys Ser His Leu Gln Asn Tyr Thr Val Asn Ala 370 375 380Thr Lys Leu Thr Val Asn Leu Thr Asn Asp Arg Tyr Leu Ala Thr Leu385 390 395 400Thr Val Arg Asn Leu Val Gly Lys Ser Asp Ala Ala Val Leu Thr Ile 405 410 415Pro Ala Cys Asp Phe Gln Ala Thr His Pro Val Met Asp Leu Lys Ala 420 425 430Phe Pro Lys Asp Asn Met Leu Trp Val Glu Trp Thr Thr Pro Arg Glu 435 440 445Ser Val Lys Lys Tyr Ile Leu Glu Trp Cys Val Leu Ser Asp Lys Ala 450 455 460Pro Cys Ile Thr Asp Trp Gln Gln Glu Asp Gly Thr Val His Arg Thr465 470 475 480Tyr Leu Arg Gly Asn Leu Ala Glu Ser Lys Cys Tyr Leu Ile Thr Val 485 490 495Thr Pro Val Tyr Ala Asp Gly Pro Gly Ser Pro Glu Ser Ile Lys Ala 500 505 510Tyr Leu Lys Gln Ala Pro Pro Ser Lys Gly Pro Thr Val Arg Thr Lys 515 520 525Lys Val Gly Lys Asn Glu Ala Val Leu Glu Trp Asp Gln Leu Pro Val 530 535 540Asp Val Gln Asn Gly Phe Ile Arg Asn Tyr Thr Ile Phe Tyr Arg Thr545 550 555 560Ile Ile Gly Asn Glu Thr Ala Val Asn Val Asp Ser Ser His Thr Glu 565 570 575Tyr Thr Leu Ser Ser Leu Thr Ser Asp Thr Leu Tyr Met Val Arg Met 580 585 590Ala Ala Tyr Thr Asp Glu Gly Gly Lys Asp Gly Pro Glu Phe Thr Phe 595 600 605Thr Thr Pro Lys Phe Ala Gln Gly Glu Ile Glu Ala Ile Val Val Pro 610 615 620Val Cys Leu Ala Phe Leu Leu Thr Thr Leu Leu Gly Val Leu Phe Cys625 630 635 640Phe Asn Lys Arg Asp Leu Ile Lys Lys His Ile Trp Pro Asn Val Pro 645 650 655Asp Pro Ser Lys Ser His Ile Ala Gln Trp Ser Pro His Thr Pro Pro 660 665 670Arg His Asn Phe Asn Ser Lys Asp Gln Met Tyr Ser Asp Gly Asn Phe 675 680 685Thr Asp Val Ser Val Val Glu Ile Glu Ala Asn Asp Lys Lys Pro Phe 690 695 700Pro Glu Asp Leu Lys Ser Leu Asp Leu Phe Lys Lys Glu Lys Ile Asn705 710 715 720Thr Glu Gly His Ser Ser Gly Ile Gly Gly Ser Ser Cys Met Ser Ser 725 730 735Ser Arg Pro Ser Ile Ser Ser Ser Asp Glu Asn Glu Ser Ser Gln Asn 740 745 750Thr Ser Ser Thr Val Gln Tyr Ser Thr Val Val His Ser Gly Tyr Arg 755 760 765His Gln Val Pro Ser Val Gln Val Phe Ser Arg Ser Glu Ser Thr Gln 770 775 780Pro Leu Leu Asp Ser Glu Glu Arg Pro Glu Asp Leu Gln Leu Val Asp785 790 795 800His Val Asp Gly Gly Asp Gly Ile Leu Pro Arg Gln Gln Tyr Phe Lys 805 810 815Gln Asn Cys Ser Gln His Glu Ser Ser Pro Asp Ile Ser His Phe Glu 820 825 830Arg Ser Lys Gln Val Ser Ser Val Asn Glu Glu Asp Phe Val Arg Leu 835 840 845Lys Gln Gln Ile Ser Asp His Ile Ser Gln Ser Cys Gly Ser Gly Gln 850 855 860Met Lys Met Phe Gln Glu Val Ser Ala Ala Asp Ala Phe Gly Pro Gly865 870 875 880Thr Glu Gly Gln Val Glu Arg Phe Glu Thr Val Gly Met Glu Ala Ala 885 890 895Thr Asp Glu Gly Met Pro Lys Ser Tyr Leu Pro Gln Thr Val Arg Gln 900 905 910Gly Gly Tyr Met Pro Gln 915

Најкомплетнија база лековитог биља подржана науком

  • Ради на 55 језика
  • Биљни лекови потпомогнути науком
  • Препознавање биљака по слици
  • Интерактивна ГПС мапа - означите биље на локацији (ускоро)
  • Читајте научне публикације повезане са вашом претрагом
  • Претражите лековито биље по њиховим ефектима
  • Организујте своја интересовања и будите у току са истраживањем вести, клиничким испитивањима и патентима

Упишите симптом или болест и прочитајте о биљкама које би могле да помогну, укуцајте неку биљку и погледајте болести и симптоме против којих се користи.
* Све информације се заснивају на објављеним научним истраживањима

Google Play badgeApp Store badge