Страна 1 од 20 резултати
Plant development is regulated by numerous chemicals derived from a multitude of metabolic pathways. However, we know very little about the biological effects and functions of many of these metabolites in the cell. N-Acylethanolamines (NAEs) are a group of lipid mediators that play important roles
Storage oil breakdown plays an important role in the life cycle of many plants by providing the carbon skeletons that support seedling growth immediately following germination. 1-Butanol, a specific inhibitor of phospholipase D (PLD)-dependent production of the signalling molecule phosphatidic acid
The organisation of plant microtubules into distinct arrays during the cell cycle requires interactions with partner proteins. Having recently identified a 90-kDa phospholipase D (PLD) that associates with microtubules and the plasma membrane [Gardiner et al. (2001) Plant Cell 13: 2143], we exposed
Salicylic acid is associated with the primary defense responses to biotic stress and formation of systemic acquired resistance. However, molecular mechanisms of early cell reactions to phytohormone application are currently undisclosed. The present study investigates the participation of
Phytohormone salicylic acid (SA) is a crucial component of plant-induced defense against biotrophic pathogens. Although the key players of the SA pathway are known, there are still gaps in the understanding of the molecular mechanism and the regulation of particular steps. In our previous research,
AtCyp38 is one of the highly divergent multidomain cyclophilins from Arabidopsis thaliana. A recombinant form of AtCyp38 (residues 83-437) was expressed in Escherichia coli and purified to homogeneity. The protein was crystallized using the vapour-batch technique with PEG 6000 and t-butanol as
We evaluated the ability of metabolic elicitors extracted from Pseudomonas fluorescens N21.4 to induce systemic resistance (ISR) in Arabidopsis thaliana against the pathogen Pseudomonas syringae DC3000. Metabolic elicitors were obtained from bacteria-free culture medium with
ABA plays an important regulatory role in seed germination because it inhibits the response to GA in aleurone, a secretory tissue surrounding the endosperm. Phosphatidic acid (PA) is a well-known intermediary in ABA signaling, but the role of diacylglycerol pyrophosphate (DGPP) in germination
The Arabidopsis has 51 proteins annotated as serine carboxypeptidase-like (SCPL) enzymes. Although biochemical and cellular characterization indicates SCPLs involved in protein turnover or processing, little is known about their roles in plant metabolism. In this study, we identified an
Salicylic acid (SA) plays a central role in defense against pathogen attack, as well as in germination, flowering, senescence, and the acquisition of thermotolerance. In this report we investigate the involvement of phospholipase D (PLD) in the SA signaling pathway. In presence of exogenous primary
BACKGROUND
Phospholipases D (PLD) are major components of signalling pathways in plant responses to some stresses and hormones. The product of PLD activity is phosphatidic acid (PA). PAs with different acyl chains do not have the same protein targets, so to understand the signalling role of PLD it
Proline accumulation is one of the most common responses of plants to environmental constraints. Thellungiella halophila/salsuginea, a model halophyte, accumulates high levels of proline in response to abiotic stress and in the absence of stress. Recently, lipid signaling pathways have been shown to
In this paper, we demonstrate the ability of Arabidopsis thaliana to detect different mixtures of volatile organic compounds (VOCs) emitted by the common indoor fungus, Aspergillus versicolor, and demonstrate the potential usage of the plant as a bioindicator to monitor fungal VOCs in indoor air. We
Phospholipase D (PLD) and its product, phosphatidic acid (PA), play key roles in cellular processes, including stress and hormonal responses, vesicle trafficking, and cytoskeletal rearrangements. We isolated and functionally characterized Arabidopsis thaliana PLDzeta2, which is expressed in various
Plants possess a highly sophisticated system for defense against microorganisms. So called MAMP (microbe-associated molecular patterns) triggered immunity (MTI) prevents the majority of non-adapted pathogens from causing disease. Adapted plant pathogens use secreted effector proteins to interfere