Страна 1 од 64 резултати
Rhodococcus kyotonensis KB10 is an endophytic bacterium isolated from Arabidopsis thaliana The organism showed mild antibacterial activity against the phytopathogen Pseudomonas syringae pv. tomato DC3000. This study reports the genome sequence of R. kyotonensis KB10. This bacterium contains an
Bovine mastitis is mainly caused by Staphylococcus aureus and antimicrobial therapy, commonly used for its control, has resulted in an increase in the frequency of resistant staphylococci in recent years. Thus, alternative therapies are desirable and the antimicrobial peptides represent attractive
Pseudomonas protegens CHA0 is a well-characterized, root-colonizing bacterium with broad-spectrum biocontrol ability. Therefore, it has a great potential to curb plant diseases and to partly replace synthetic chemical pesticides that are harmful to humans. Here, we obtained the multifunctional
Thionins are plant antimicrobial peptides with antibacterial and antifungal activities. Thionin Thi2.1 cDNA from Arabidopsis thaliana was expressed in BVE-E6E7 bovine endothelial cell line and its activity was evaluated against Escherichia coli, Staphylococcus aureus, Candida albicans and different
UNASSIGNED
A chemical screen of plant-derived compounds identified holaphyllamine, a steroid, able to trigger defense responses in Arabidopsis thaliana and improve resistance against the pathogenic bacterium Pseudomonas syringae pv tomato DC3000. A chemical screen of 1600 plant-derived compounds was
Microbial pathogens strategically acquire metabolites from their hosts during infection. Here we show that the host can intervene to prevent such metabolite loss to pathogens. Phosphorylation-dependent regulation of sugar transport protein 13 (STP13) is required for antibacterial defense in the
Many bacterial pathogens of plants and animals deliver effector proteins into host cells to promote infection. Elucidation of how pathogen effector proteins function not only is critical for understanding bacterial pathogenesis but also provides a useful tool in discovering the functions of host
Plant innate immunity restricts growth of bacterial pathogens that threaten global food security. However, the mechanisms by which plant immunity suppresses bacterial growth remain enigmatic. Here we show that Arabidopsis thaliana secreted aspartic protease 1 and 2 (SAP1 and SAP2) cleave the
Plants show a suite of inducible defense responses against bacterial pathogens. Here we investigate in detail the effect of the circadian clock on these reactions in Arabidopsis thaliana. The magnitude of immune responses elicited by flg22, by virulent and by avirulent Pseudomonas syringae strains
Nitrate reductase (NR) has emerged as a potential NO source in plants. Indeed, the Arabidopsis thaliana NR double-deficient mutant (nia1 nia2) produces low NO and develops abnormal susceptibility to bacterial infection. We have employed quantitative real-time polymerase chain reactions to analyze
DNA methylation is an epigenetic mark that silences transposable elements (TEs) and repeats. Whereas the establishment and maintenance of DNA methylation are relatively well understood, little is known about their dynamics and biological relevance in plant and animal innate immunity. Here, we show
Plants utilize an innate immune system to protect themselves from disease. While many molecular components of plant innate immunity resemble the innate immunity of animals, plants also have evolved a number of truly unique defense mechanisms, particularly at the physiological level. Plant's flexible
A heat-stable protein with antimicrobial activity was isolated from Arabidopsis thaliana plants by buffer-soluble extraction and two chromatographic procedures. The results of MALDI-TOF analysis revealed that the isolated protein shares high sequence identity with aspen SP1. To determine the exact
Siderophores produced in soil by plant growth-promoting rhizobacteria (PGPRs) play several roles, including nutrient mobilizers and can be useful as plants defense elicitors. We investigated the role of a synthetic mixed ligand bis-catechol-mono-hydroxamate siderophore (SID) that mimics the chemical
Arabidopsis thaliana exhibits a developmentally regulated disease-resistance response known as age-related resistance (ARR), a process that requires intercellular accumulation of salicylic acid (SA), which is thought to act as an antimicrobial agent. ARR is characterized by enhanced resistance to