Страна 1 од 387 резултати
The effect of lithium carbonate on promotion of N-butyl-N-(4-hydroxybutyl)-nitrosamine-induced bladder tumors in rats was studied. Lithium carbonate acted as promoter in bladder carcinogenesis resulting in a 6-fold increase in the tumor occurrence as compared to controls. The experiments with
A novel 2-fluorodeoxyglucose conjugated derivative of paclitaxel was efficiently synthesized using a linker between 2'-OH of paclitaxel and C1-hydroxyl group of 2-fluorodeoxyglucose. In preparation of the prodrug, allyl carbonates were selected as the protective group and the efficient one-step
Cyclic RGD peptide-decorated polymeric micellar-like nanoparticles (MNP) based on PEGylated poly (trimethylene carbonate) (PEG-PTMC) were prepared for active targeting to integrin-rich cancer cells. An amphiphilic diblock copolymer, α-carboxyl poly (ethylene glycol)-poly (trimethylene carbonate)
A pH-responsive nanoparticle platform, based on PEG-b-poly (carbonate) block copolymers have been proposed that can respond to low pH as found in many cancer micro- and intracellular environment, including that in pancreatic cancer. The hydrophobic domain, i.e., the poly (carbonate) segment has been
Two Kinds of tumor-bearing mice (hepatoma H22 and sarcoma S180) were administered with lithium carbonate (Li2CO3) for 17 or 10 days (advanced and simultaneous administration), in order to observe the effects of prevention and treatment of Li2CO3 on malignant tumor, as well as the relationship
Herein, our aim is to develop a drug-free method without obvious side effects to treat cancer through biomineralization of biocompatible inorganic nanomaterials targeting onto cells' membrane to block transport proteins. We selected chondroitin sulfate as optimal target agent and linker to induce
The morphology, size, and surface area of nanoparticles (NPs), with the existence of functional groups on their surface, contribute to the drug binding affinity, distribution of the payload in different organs, and targeting of a particular tumor for exerting effective antitumor activity in vivo.
Drug delivery to solid tumours remains a challenge because both tumour physiology and drug solubility are unfavourable. Engineered materials can provide the basis for drug reformulation, incorporating active compounds and modulating their pharmacokinetic and biodistribution behaviour. To this end,
Current chemotherapeutic dosing strategies are limited by the toxicity of anticancer agents and therefore rely on multiple low-dose administrations. As an alternative, we describe a novel sustained-release, biodegradable polymeric nanocarrier as a single administration replacement of multi-dose
Oxidant-antioxidant status in tumor tissue of male-mice CBA at spontaneous course of hepatocarcinoma-29 and after repeated injections of lithium carbonate nanosized particles was evaluated on changes of lipid peroxidation (LPO) products level reacted with 2-thiobarbituric acid (TBA) as indicator of
Pharmacotherapy as the mainstay in the management of breast cancer has demonstrated various drawbacks, including non-targeted bio distribution and narrow therapeutic and safety windows. Thus, enhancements in pharmacodynamic and pharmacokinetic profiles of the classical anti-cancer drugs could lead
Contrast-enhanced ultrasound (CEUS) is widely applied in cancer diagnosis clinically. However, the gas-filled contrast agents are unstable in the blood and exhibit shorter imaging time, which limit their clinical use. In this study, a diagnostic nanoparticle system was developed for dual-mode
pH sensitives carbonate apatite (CA) has emerged as a targeted delivery vehicle for chemotherapeutics agent with tremendous potential to increase the effectivity of breast cancer treatment. The major challenge for intravenous delivery of drug-incorporated nanoparticles is their rapid opsonization,
BACKGROUND
Ovarian cancer patients with chemotherapy-resistant residual microscopic disease in the peritoneal cavity have a considerable need for new treatment options. Alpha-emitting radionuclides injected intraperitoneally may be an attractive therapeutic option in this situation as they are
Substantial amount of research has been done in recent decades for the development of nanoparticle systems to selectively deliver drugs to cancer cells for concurrently enhancing and reducing anti-cancer and off-target effects, respectively. pH-sensitive carbonate apatite (CA) was originally