Страна 1 од 1245 резултати
In this work, we investigated the role of an Arabidopsis protein, AtPDCD5, during senescence after a 24h-dark period. Previously, we demonstrated that AtPDCD5 participates in programmed cell death (PCD) after UV-B exposure and in age-induced senescence. The results presented here, together with
JASMONATE ZIM-domain (JAZ) proteins play important roles in plant defence and growth by regulating jasmonate signalling. Through data mining, we discovered that the JAZ7 gene was up-regulated in darkness. In the dark, the jaz7 mutant displayed more severe leaf yellowing, quicker chlorophyll
The Arabidopsis ABSCISIC ACID-INSENSITIVE3 (ABI3) protein has been identified previously as a crucial regulator of late seed development. Here, we show that dark-grown abi3 plants, or abi3 plants returned to the dark after germination in the light, developed and maintained an etioplast with a
Arabidopsis WRKY proteins are plant-specific transcription factors, encoded by a large gene family, which contain the highly conserved amino acid sequence WRKYGQK and the zinc-finger-like motifs, Cys(2)His(2) or Cys(2)HisCys. They can recognize and bind the TTGAC(C/T) W-box ciselements found in the
Despite intense research on light responses in plants, the consequences of a simple shift from light to darkness are largely unexplored. In this research, the physiological outcome and proteomic changes in Arabidopsis cell suspension cultures after switching from light to total darkness were
Peroxisomes compartmentalize a dynamic suite of biochemical reactions and play a central role in plant metabolism, such as the degradation of hydrogen peroxide, metabolism of fatty acids, photorespiration, and the biosynthesis of plant hormones. Plant peroxisomes have been traditionally classified
High concentrations of cytokinins (CKs) in the cultivation medium can induce partial photomorphogenesis in dark-grown Arabidopsis seedlings. However, no significant increases in endogenous CK levels have been found in de-etiolated mutants, suggesting that either parallel pathways are involved in the
The nitric oxide (NO)-deficient mutant nos1/noa1 exhibited an early leaf senescence phenotype. ETHYLENE INSENSITIVE 2 (EIN2) was previously reported to function as a positive regulator of ethylene-induced senescence. The aim of this study was to address the question of how NO interacts with ethylene
The rate of cyclic electron flow measured in dark-adapted leaves under aerobic conditions submitted to a saturating illumination has been performed by the analysis of the transmembrane potential changes induced by a light to dark transfer. Using a new highly sensitive spectrophotometric technique, a
GIGANTEA (GI) is a key regulator of photoperiodic flowering in Arabidopsis and encodes a protein with no domains of known biochemical function. Expression of GI mRNA is controlled by the circadian clock, but GI protein accumulation has not been previously investigated. We generated plants that
Despite intense research on light responses in plants, the consequences of a simple shift from light to darkness remain poorly characterized. We have examined the transcriptome of Arabidopsis thaliana seedling leaves upon a shift from constant light to darkness for between 1 and 8 h, while excluding
Light regulates leaf senescence and light deprivation causes large-scale transcriptional reprogramming to dismantle cellular components and remobilize nutrients to sink organs, such as seeds and storage tissue. We recently reported that in Arabidopsis (Arabidopsis thaliana), Phytochrome-Interacting
Anion channels are thought to participate in signal transduction and turgor regulation in higher plant cells. The regulation of hypocotyl cell elongation is a situation in which these channels could play important roles because it involves ionic fluxes that are implicated in turgor control and
Although the involvement of ROS (reactive oxygen species) in leaf senescence is well known, the factors governing this accumulation of ROS are not fully characterized. In this study, analysis of transgenic overexpressing and knock out lines of AtWDS1 (encoding a WD repeat protein), indicates that
Global CO2 level presently recorded at 400 ppm is expected to reach 550 ppm in 2050, an increment likely to impact plant growth and productivity. Using targeted LC-MS and GC-MS platforms we quantified 229 and 29 metabolites, respectively in a time-course study to reveal short-term responses to