7 резултати
Transfer into a fresh medium or immobilization by entrapment in calcium alginate gels of cultured Glycyrrhiza echinata cells caused a rapid and transient accumulation of a retrochalcone, echinatin, in both the cells and the medium. The higher level and longer duration of echinatin production was
Yeast extract-treated suspension cultures of a new cell line, AK-1, of Glycyrrhiza echinata were induced to produce an isoflavonoid phytoalexin (medicarpin) and metabolites of retrochalcone/flavone pathway (echinatin, licodione, and 7,4'-dihydroxyflavone). From these cells, putative full-length
Three O-methyltransferases which catalyze S-adenosyl-L-methionine (SAM)-dependent O-methylation of licodione (LMT), flavone/flavonol (FMT), and caffeic acid (CMT) were separated from the callus culture of Glycyrrhiza echinata, and characteristic differences between their pH optima and Mg(2+)
Chalcone synthase activity catalyzing the formation of naringenin (5-hydroxyflavanone) was detected in cell suspension cultures of Glycyrrhiza echinata. This activity rapidly increased by treatment of the cells with yeast extract, while non-treated cells showed a constant low activity. Isolated G.
Cultured Glycyrrhiza echinata L. (Leguminosae) cells produce a retrochalcone echinatin (4,4[prime]-dihydroxy-2-methoxychalcone) and its biosynthetic intermediate licodione [1-(2,4-dihydroxyphenyl)-3-(4-hydroxyphenyl)-1,3-propanedione, a dibenzoylmethane (keto form) or its enol tautomer
To investigate the mechanism by which various biological action of licorice root are brought about, the effects of echinatin as a small constituent of Glycyrrhiza echinata and several related compounds on mitochondrial energy transfer reactions were examined. The results obtained were as follows: 1)
Isoflavonoids are distributed predominantly in leguminous plants and play critical roles in plant physiology. A cytochrome P450 (P450), 2-hydroxyisoflavanone synthase, is the key enzyme in their biosynthesis. In cultured licorice (Glycyrrhiza echinata L., Fabaceae) cells, the production of both an