Страна 1 од 96 резултати
We have previously shown that tamoxifen+epigallocatechin gallate (EGCG) is synergistically cytotoxic towards oestrogen receptor (ER)-negative breast cancer cells. To determine if this response would correlate with significant tumour suppression in vivo, athymic nude female mice were implanted with
In this study we characterized (3)H-2-deoxy-d-glucose ((3)H -DG) uptake by the estrogen receptor (ER)-positive MCF7 and the ER-negative MDA-MB-231 human breast cancer cell lines and investigated the effect of quercetin (QUE) and epigallocatechin gallate (EGCG) upon (3)H-DG uptake, glucose metabolism
In the present work, we investigated the effect of epigallocatechin gallate (EGCG) on triple negative breast cancer cells (Hs578T) to reduce cell proliferation and to evaluate early apoptotic signals. The dynamic monitoring of Hs578T cells treated with EGCG using the xCELLigence System confirm the
High concentrations of specific catechins [epigallocatechin gallate (EGCG), epigallocatechin (EGC) and epicatechin gallate (ECG)] inhibit the proliferation of many different cancer cell lines. The aim of this work was to determine if low concentrations of catechins with and without
Green tea has been suggested for prevention of cancers. In this study, the effect of the main constituent of green tea, epigallocatechin gallate (EGCG), on apoptosis of breast cancer cells was examined. EGCG induced apoptosis in T-47D cells through caspase cascade and the cells were detained at the
Currently, there is no effective therapy for estrogen independent breast cancer. MDA-MB-231 is an estrogen receptor negative highly invasive human breast cancer cell line and has been used as a relevant model system to evaluate drugs with chemopreventive potential against highly invasive breast
METHODS
Exposure of the breast to estrogens and other sex hormones is an important cancer risk factor and estrogen receptor downregulators are attracting significant clinical interest. Epigallocatechin gallate (EGCG), a polyphenolic compound found in green tea, has gained considerable attention for
Nanomedicines consisting of combinations of cytotoxic drugs and molecular targeted therapeutics which inhibit specific downstream signals are evolving as a novel paradigm for breast cancer therapy. This research addresses one such combination of Paclitaxel (Ptx), having several adversities related
OBJECTIVE
Epigenetics refers to modifications in gene activity and expression without alteration at the DNA sequence. Environment and diet could influence gene expression. Diet modifications may be meaningful in preventing and treating chronic diseases, cancer included. Dietary bioactive compounds,
Tea [Camellia sinensis (Theaceae)] intake is second only to water in terms of worldwide popularity as a beverage. The Green tea polyphenols have been shown to have a protective effect in prostate cancer in various pre-clinical animal models and has been reported to be effective in several other
BACKGROUND
Tumor-associated macrophages (TAM) play an important role in tumor microenvironment. Particularly, M2 macrophages contribute to tumor progression, depending on the expression of NF-κB. Tumor-derived exosomes can modulate tumor microenvironment by transferring miRNAs to immune cells.
BACKGROUND
Paclitaxel (Taxol) is a microtubule-targeted agent that is widely used for cancer treatment. However, resistance to paclitaxel is frequently encountered in the clinic. There is increasing interest in identifying compounds that may increase the sensitivity to conventional chemotherapeutic
Epigallocatechin-gallate (EGCG) is a potent anti-cancer therapeutic which effectively controls the growth of cancerous cells through a variety of different pathways. However, its molecular structure is susceptible to modifications due to cellular enzymes affecting its stability, bioavailability and
Matrix metalloproteinases (MMPs) have been investigated as a potential target for treating invasive breast cancers. The chemotherapy for breast cancer is often prescribed as a combination of drugs. The present study investigates a novel strategy of combining a MMP inhibitor, Epigallocatechin gallate
Both epigallocatechin gallate (EGCG) and curcumin have shown efficacy in various in vivo and in vitro models of cancer. This study was designed to determine the efficacy of these naturally derived polyphenolic compounds in vitro and in vivo, when given in combination. Studies in MDA-MB-231 cells