Страна 1 од 700 резултати
Cancer stem cells (H1299-sdCSCs) were obtained from tumour spheres of H1299 human lung cancer cells. We studied low stiffness, a unique biophysical property of cancer cells, in H1299-sdCSCs and parental H1299. Atomic force microscopy revealed an average Young's modulus value of 1.52 kPa for
Epigallocatechin gallate (EGCG), which is derived from green tea, is well known for its chemopreventive activity. Several studies have shown that p53 plays an important role in the activity of EGCG; however, the mechanism by which EGCG regulates p53 requires further investigation. In the present
Previously, we demonstrated synergistic enhancement of vasorelaxation by combination treatment with Trp-His and epigallocatechin gallate (EGCg) in intact rat aorta. The aim of the present study was to determine whether this vasorelaxant synergy could be recapitulated in tumor necrosis factor-alpha
We investigated whether inhalation of aerosolized epigallocatechin gallate (EGCG) would prevent the development of lung tumors produced by tobacco smoke (TS). Male strain A/J mice were exposed for 5 mo, 6 h/day, 5 days/wk, to a mixture of tobacco sidestream and mainstream smoke. At the end of this
In this study we characterized (3)H-2-deoxy-d-glucose ((3)H -DG) uptake by the estrogen receptor (ER)-positive MCF7 and the ER-negative MDA-MB-231 human breast cancer cell lines and investigated the effect of quercetin (QUE) and epigallocatechin gallate (EGCG) upon (3)H-DG uptake, glucose metabolism
Flavonoids have been suggested to protect against atherosclerosis via their antioxidant and anti-inflammatory properties. Heme oxygenase-1 (HO-1) is an enzyme that plays an important role in the vascular system, and its induction may provide a protective role against atherosclerosis. We hypothesize
Epigallocatechin gallate (EGCG), the major biologically active compound in green tea, is a well-known chemoprevention agent. Although several reports have shown that EGCG exerts its anticancer activity by targeting specific cell signaling pathways, the underlying molecular mechanism(s) are only
Hyperthermia (HT) has shown feasibility and potency as an anticancer therapy. Administration of HT in the chemotherapy has previously enhanced the cytotoxicity of drugs against pancreatic cancer. However, the drugs used when conducting these studies are substantially conventional chemotherapeutic
Green tea and its major constituent epigallocatechin gallate (EGCG) have been extensively studied as a potential treatment for a variety of diseases, including cancer. Epidemiological data have suggested that EGCG may provide protective effects against hormone related cancers, namely breast or
It is agreed that many of the antitumor effects of (-)-epigallocatechin gallate (EGCG) are mediated by various other effects. We report a new finding, namely, the antiproliferation potential and mechanism of methylated-(3'')-epigallocatechin gallate analog (MethylEGCG) having a stronger
Recently, gold nanomaterials and iron oxide nanoparticles (NPs) have attracted much attention due to their unique physical, chemical and biological properties. In this study, polyethyleneimine (PEI)-modified Fe3O4 NPs (inner cores) were first prepared, and then gold shells
In the present work, we investigated the effect of epigallocatechin gallate (EGCG) on triple negative breast cancer cells (Hs578T) to reduce cell proliferation and to evaluate early apoptotic signals. The dynamic monitoring of Hs578T cells treated with EGCG using the xCELLigence System confirm the
Epigallocatechin gallate (EGCG) is a potent polyphenolic antioxidant extracted from green tea. Due to its antimutagenic and antitumor activities, it is a promising candidate for use in topical formulations for skin cancer prevention. The overall goal of this study was therefore to determine the
Plant bioactives [6]-gingerol (GING), epigallocatechin gallate (EGCG) and asiaticoside (AS) and vitamin E, such as tocotrienol-rich fraction (TRF), have been reported to possess anticancer activity. In this study, we investigated the apoptotic properties of these bioactive compounds alone or in
Advanced-stage ovarian cancer is characterized by high mortality due to development of resistance to conventional chemotherapy. Novel compounds that can enhance the efficacy of conventional chemotherapy in ovarian cancer may overcome this drug resistance. Consumption of green tea (epigallocatechin