Страна 1 од 25 резултати
Recent research has significantly advanced our understanding of the phenylpropanoid pathway but has left in doubt the pathway by which sinapic acid is synthesized in plants. The reduced epidermal fluorescence1 (ref1) mutant of Arabidopsis thaliana accumulates only 10 to 30% of the sinapate esters
Abstract:Salt stress is one of the most common factors limiting plant cultivation. In this study, metabolic responses to salt stress in Arabidopsis thaliana (A. thaliana) leaves were analyzed in situ by neutral desorption-extractive electrospray ionization mass spectrometry (ND-EESI-MS) without any
Anthocyanins are secondary plant metabolites ubiquitous in the plant kingdom. They have different biological activities, so monitoring their content in plant tissue or in feed/food derived from plants may be an important task in different projects from various fields of molecular biology and
Root secretion of coumarin-phenolic type compounds has been recently shown to be related to Arabidopsis thaliana tolerance to Fe deficiency at high pH. Previous studies revealed the identity of a few simple coumarins occurring in roots and exudates of Fe-deficient A. thaliana plants, and left open
Mature seeds of Arabidopsis thaliana and Brassica napus contain a complex mixture of aliphatic monomers derived from the non-extractable lipid polyesters deposited by various seed tissues. Methods of polyester depolymerization of solvent-extracted seeds and analysis of aliphatic monomers were
In addition to accumulating biologically active chemicals, plant roots continuously produce and secrete compounds into their immediate rhizosphere. However, the mechanisms that drive and regulate root secretion of secondary metabolites are not fully understood. To enlighten two neglected areas of
Cinnamoyl CoA reductase (CCR; EC 1.2.1.44) is the first enzyme specific to the biosynthetic pathway leading to monolignols. Arabidopsis thaliana (L.) Heynh. plants transformed with a vector containing a full-length AtCCR1 cDNA in an antisense orientation were obtained and characterized. The most
CONCLUSIONS
Coumarins are derived via the phenylpropanoid pathway in plants. The 2H-1-benzopyran-2-one core structure of coumarins is formed via the ortho-hydroxylation of cinnamates, trans/cis isomerization of the side chain, and lactonization. Ortho-hydroxylation is a key step in coumarin
Cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the last steps of monolignol biosynthesis. In Arabidopsis, one CCR gene (CCR1, At1g15950) and two CAD genes (CAD C At3g19450 and CAD D At4g34230) are involved in this pathway. A triple cad c cad d ccr1 mutant, named ccc,
Cinnamoyl-CoA reductase 1 (CCR1, gene At1g15950) is the main CCR isoform implied in the constitutive lignification of Arabidopsis thaliana. In this work, we have identified and characterized two new knockout mutants for CCR1. Both have a dwarf phenotype and a delayed senescence. At complete
Plant aldehyde dehydrogenases (ALDHs) play important roles in cell wall biosynthesis, growth, development, and tolerance to biotic and abiotic stresses. The Reduced Epidermal Fluorescence1 is encoded by the subfamily 2C of ALDHs and was shown to oxidise coniferaldehyde and sinapaldehyde to ferulic
4-Coumaroyl-CoA ligase (4CL) is ubiquitous in the plant kingdom, and plays a central role in the biosynthesis of phenylpropanoids such as lignins, flavonoids, and coumarins. 4CL catalyzes the formation of the coenzyme A thioester of cinnamates such as 4-coumaric, caffeic, and ferulic acids, and the
An anionic peroxidase RsPrx1 was purified (RZ=3.0) and characterized from roots of Chinese red radish (Raphanus sativus var. niger, Brassicaceae). The specific activity of RsPrx1 (micromol mg(-1) min(-1)) is 413.5 (ferulic acid); 258.7 (ABTS); 177.3 (caffeic acid) and 10.0 (guaiacol acid). The
Arabidopsis thaliana and other members of the Brassicaceae accumulate the hydroxycinnamic acid esters sinapoylmalate in leaves and sinapoylcholine in seeds. Our recent understanding of the phenylpropanoid pathway although complex has enabled us to perturb the sinapine biosynthesis pathway in plants.
Curcuminoids are phenylpropanoids with high pharmaceutical potential. Herein, we report an engineered artificial pathway in Escherichia coli to produce natural curcuminoids through caffeic acid. Arabidopsis thaliana 4-coumaroyl-CoA ligase and Curcuma longa diketide-CoA synthase (DCS) and curcumin