8 резултати
Four undescribed cembrane-type diterpenoids, boscartins L-O, as well as five known compounds (1S, 3R, 11S, 12R, 7E)-1,12-epoxy-4-methylenecembr-7- ene- 3,11-diol, isoincensole oxide, incensole oxide, incensole acetate and incensole oxide acetate were isolated from the gum resin of Boswellia sacra
Incensole acetate (IA), a constituent of Boswellia resin ('frankincense'), was previously demonstrated to exhibit an antidepressive-like effect in the Forced Swim Test (FST) in mice following single dose administration (50 mg/kg). Here, we show that acute administration of considerably lower dose
Aromatic gum from Boswellia carteri (olibanum oleogum) has long been used in Egyptian traditional medicine. Cyclooxygenase-1 (COX-1) enzyme inhibitory assay guided purification of the extracts of this resin resulted in five bioactive compounds, 3alpha-O-acetyl-8,24-dien-tirucallic acid (1),
Incensole and its acetate have shown anti-inflammatory and anti-depression activities due to their ability to activate ion channels in the brain to alleviate anxiety or depression. The natural occurrence of these two structurally and medicinally fascinating 14-membered diterpenoids was reported
BACKGROUND
Resins of the genus Boswellia are currently an interesting topic for pharmaceutical research since several pharmacological activities (e.g. anti-inflammatory, anti-microbial, anti-tumour) are reported for extracts and compounds isolated from them. Unambiguous identification of these
The frankincense resins, secreted from Boswellia species, are an uncommon example of a natural raw material where every class of terpenoids is present in similar proportions. Diterpenoids (serratol, incensole, incensole acetate) are used to discriminate samples from different species and origins.
OBJECTIVE
Despite its historical-religious, cultural and medical importance, Boswellia has not been thoroughly studied, and gaps still exist between our knowledge of the traditional uses of the resin and the scientific data available. Here we review the pharmacology of Boswellia resin and of the
The chemical composition of Boswellia carteri (Somalia), B. papyrifera (Ethiopia), B. serrata (India) and B. rivae (Ethiopia) oleogum resin essential oils was investigated using GC-MS to identify chemotaxonomy marker components. Total ion current peak areas gave good approximations to relative