9 резултати
Glycyrrhiza inflata has been used as a traditional medicine with anti-inflammatory activity; however, its mechanism has not been fully understood. Licochalcone A is a major and biogenetically characteristic chalcone isolated from G. inflata. Here, we found that licochalcone A strongly inhibited
OBJECTIVE
Esophageal carcinoma is one of the most aggressive human cancers, and novel treatment modality is required. Although expressing adequate levels of functional tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors DR4/DR5, significant proportion of esophageal cancer cells
Licochalcone A (LA), a chalcone derived from liquorice, exhibits multiple biological activities, including anti-oxidation and anti-inflammation. This study aimed to investigate the role and underlying mechanism of LA in the abdominal aortic aneurysm (AAA). AAA model was established by continuous
OBJECTIVE
Experimental autoimmune encephalomyelitis (EAE) is a murine autoimmune disease used to study multiple sclerosis. Herein, we have investigated the immunomodulatory effect of licochalcone A (LicoA) on NO, H2 O2 , tumour necrosis factor-alpha (TNF-α), interferon gamma (IFN-γ) and IL-17
Enterotoxins produced by Staphylococcus aureus are the key pathogenicity factors that can cause a variety of illnesses in humans, including staphylococcal gastroenteritis and food poisoning. It has been proven that licochalcone A is a potentially effective antimicrobial agent against S. aureus. In
Perinatal hypoxic-ischemic encephalopathy (HIE) is a leading cause of neonatal death and neurological disability. Oxidative stress and neuroinflammation are typical pathogenic factors of HIE. Licochalcone A (LCA) exerts various biological properties, including anti-inflammatory and antioxidant
Drug efflux transporter P-glycoprotein plays an important role in cancer chemotherapy. The nuclear factor-κB (NF-κB) transcription factors play critical roles in development and progression of cancer. In this study, the effects of natural compounds that can inhibit NF-κB activation on the function
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in cancer cells without toxicity to normal cells. TRAIL binds to death receptors, TRAIL-R1 (DR4) and TRAIL-R2 (DR5) expressed on cancer cell surface and activates apoptotic pathways. Endogenous TRAIL plays an important
Chalcones exhibit chemopreventive and antitumor effects. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a naturally occurring anticancer agent that induces apoptosis in cancer cells and is not toxic to normal cells. We examined the cytotoxic and apoptotic effect of five chalcones