Страна 1 од 237 резултати
Multidrug resistance (MDR) can limit efficacy of chemotherapy. The best studied mechanism involves P-gp (P-glycoprotein) mediated drug efflux. This study focuses on MDR reversal agents from medicinal plants, which can interfere with P-gp. Rhodamine 123 accumulation assay and flow cytometry analysis
OBJECTIVE
In our ongoing studies to develop ER targeting agents, we screened for dual-acting molecules with a hypothesis that a single molecule can also target both ER positive and negative groups of breast cancer.
METHODS
1-(2-(4-(Dibenzo[b,f]thiepin-10-yl)phenoxy)ethyl)piperidine (DTPEP) was
CLEFMA, 4-(3,5-bis(2-chlorobenzylidene)-4-oxo-piperidine-1-yl)-4-oxo-2-butenoic acid, is a new chemical entity with anti-cancer and anti-inflammatory activities. Here, we report its stability in solution against stress conditions of exposure to acid/base, light, oxidant, high temperature, and
Reaction of 3,5-bis(arylmethylene)-1-methyl-4-piperidinones 1a-1g with azomethine ylides (generated in situ via decarboxylative condensation of isatins 2a,2b with sarcosine 3) in refluxing ethanol afforded
We recently reported a novel curcuminoid 4-[3,5-bis(2-chlorobenzylidene-4-oxo-piperidine-1-yl)-4-oxo-2-butenoic acid] or CLEFMA as a potent anti-proliferative agent, and showed that it induces autophagic cell death in lung cancer cells. We are now reporting a drug-in-CD-in-liposome approach to
Tubulin polymerisation inhibitors that target colchicine binding site were powerful anticancer agents. Although along the years many colchicine binding site inhibitors (CBSIs) have been reported, few piperidine derivatives were identified as CBSIs. In this regard, we focussed efforts on the
Piperidine is an important pharmacophore, a privileged scaffold and an excellent heterocyclic system in the field of drug discovery which provides numerous opportunities in studying/exploring this moiety as an anticancer agent by acting on various receptors of utmost importance. Cancer is an
OBJECTIVE
4-[3,5-Bis(2-chlorobenzylidene)-4-oxo-piperidine-1-yl]-4-oxo-2-butenoic acid CLEFMA is a new anti-cancer molecule. Here, we investigated changes in apoptosis and inflammatory markers during CLEFMA-induced tumour suppression.
METHODS
Lung adenocarcinoma H441 and A549, and normal lung
The global modification of mammalian and plasmid DNAs by novel platinum compounds, cis- or trans-[PtCl(2)(NH(3))(Am)], where Am = NH(3), nonplanar heterocycle piperidine, piperazine, or aromatic planar heterocycle 4-picoline, was investigated in cell-free media using various biochemical and
The development of sigma (sigma) receptor radioligands has become the focus of research over the past few years due to their potential uses in nuclear medicine. It has been shown that a wide variety of human tumor cell lines express sigma receptors, including malignant melanoma and tumors of the
OBJECTIVE
4-Benzyl-1-(3-iodobenzylsulfonyl)piperidine, 4-B-IBSP, has shown high-binding affinity to both sigma (σ) receptors in our previous work. In current study, radiolabeling and preclinical evaluation of 4-benzyl-1-(3-[125I]-iodobenzylsulfonyl)piperidine, 4-B-[125I]IBSP, in human ductal breast
A facile synthesis of piperidine alkene-alkaloids including natural (+)-Caulophyllumine B in high yields has been developed by Heck cross-coupling reaction catalyzed by simple in situ formed palladium-N-heterocyclic carbenes (Pd-NHCs). Formation of Pd(0) nanoparticles has been noticed during the
Over-expression of P-gp, MRP1 and BCRP in tumor cells is one of the important mechanisms leading to multidrug resistance (MDR), which impairs the efficacy of chemotherapy. P-gp, MRP1 and BCRP are ABC (ATP-Binding Cassette) transporters, which can expel a variety of lipophilic anti-cancer drugs and
A nitroxide radical, Tempol (Tempol, TPL), is usually used as an antioxidative agent clinically, whereas the mechanism underlying its pro-oxidative effect has not been thoroughly investigated. The present study investigated the pro-oxidative effect of TPL on the inhibition of cellular proliferation
Alkaloid molecules can act, depending on a type of amine functionality present in alkalods, as either hydrogenacceptor or hydrogen-donor for hydrogen bonding that is critically important for the interaction (binding) between targets (enzymes, proteins and receptors) and drugs (ligands). Because of