5 резултати
Skeletal muscle atrophy is a common and debilitating condition that lacks an effective therapy. To address this problem, we used a systems-based discovery strategy to search for a small molecule whose mRNA expression signature negatively correlates to mRNA expression signatures of human skeletal
OBJECTIVE
Here, we discuss a recently developed experimental strategy for discovering small molecules with potential to prevent and treat skeletal muscle atrophy.
RESULTS
Muscle atrophy involves and requires widespread changes in skeletal muscle gene expression, which generate complex but measurable
In this study, we investigated whether the anti-inflammatory effects of tomatidine alleviate osteoarthritis (OA)-related pathology in primary articular chondrocytes and a rat OA model. STITCH database analysis identified 22 tomatidine-target genes that were enriched in 78 Kyoto Encyclopedia of Genes
Aging reduces skeletal muscle mass and strength, but the underlying molecular mechanisms remain elusive. Here, we used mouse models to investigate molecular mechanisms of age-related skeletal muscle weakness and atrophy as well as new potential interventions for these conditions. We identified two
Aging is a major international concern that brings formidable socioeconomic and healthcare challenges. Small molecules capable of improving the health of older individuals are being explored. Small molecules that enhance cellular stress resistance are a promising avenue to alleviate declines seen in