Ethnobotany, phytochemistry, and pharmacology of the genus Litsea: An update.
Nyckelord
Abstrakt
BACKGROUND
The genus Litsea is one of the most diverse genera of evergreen trees or shrubs belong to Lauraceae, and comprises roughly 400 species of tree that are distributed abundantly throughout tropical and subtropical Asia, North and South America. Litsea species have been used globally in traditional medicine for the treatment of various diseases including influenza, stomach aches, diarrhea, diabetes, vomiting, bone pain, inflammation, illness related to the central nervous system and other ailments. The purpose of this review is to provide updated, comprehensive and categorized information on the ethnobotany, phytochemistry and pharmacological research of Litsea species in order to explore their therapeutic potential and evaluate future research opportunities.
METHODS
All the available information on Litsea species was actualised by systematically searching the scientific literatures including Chinese, Korean, Japanese, Indian, and South American herbal classics, library catalogs and scientific databases (PubMed, SciFinder, Web of Science, Google Scholar, VIP and Wanfang). The Plant List, International Plant Name index and Scientific Database of China Plant Species were used to validate scientific names.
RESULTS
407 secondary metabolites have been reported from Litsea species. Litsea Species are sources of secondary metabolites with interesting chemical structures (alkaloids, lactones, sesquiterpenes, flavonoids, lignans, and essential oils) and significant bioactivities. Crude extracts, fractions and phytochemical constituents isolated from Litsea show a wide spectrum of in vitro and in vivo pharmacological activities including anticancer, anti-inflammatory, antimicrobial, antioxidant, antidiabetic, anti-HIV, insecticidal, etc.
CONCLUSIONS
From data collected in this review, the genus Litsea comprises a wide range of therapeutically promising and valuable plants, and has attracted much attention owing to its multiple functions. Many traditional uses of Litsea species have now been validated by modern pharmacology research. Deep and systematic phytochemical investigation of the genus Litsea and the pharmacological properties, especially its mechanism of action and toxicology, to illustrate its ethnomedicinal use, explore the therapeutic potential and support further health-care product development will undoubtedly be the focus of further research. Therefore, detailed and extensive studies and clinical evaluation of Litsea species should be carried out in future for the safety approval of therapeutic applications.