Host plant adaptation and the evolution of thermal reaction norms.
Nyckelord
Abstrakt
For most ectotherms, increasing the rearing temperature reduces the final (adult) body size, producing a negative slope for the thermal reaction norm. Recent studies show that this relationship may be reversed under conditions of low resource quality, producing a positive slope for the thermal reaction norm. If populations or species differ in the degree of evolutionary adaptation to a resource, how does this differential adaptation alter their thermal reaction norms? We used a common garden experiment with the tobacco hornworm, Manduca sexta, to address this question. We examined the thermal reaction norms for body size of two populations of M. sexta that differ in their evolutionary exposures to an atypical, low-quality resource (devil's claw; Proboscidea louisianica), but have comparable exposures to a typical, high-quality resource (tobacco; Nicotiana tabacum). Both populations had increased mean larval mortalities and development times when reared on devil's claw compared with tobacco, but the magnitudes of these increases differed between populations. Both populations had similar, negatively sloped thermal reaction norms on the typical, high-quality resource (tobacco), but had divergent, non-negative thermal reaction norms on the atypical, low-quality resource (devil's claw): the population with the longer evolutionary history of exposure to the atypical resource exhibited a flat (rather than positive) reaction norm. These results suggest that population differences in host plant adaptation can predictably influence the slopes of thermal reaction norms.