Sida 1 från 62 resultat
The homodimeric alcohol dehydrogenase gene produce of maize (Zea mays L.) Adh1-1S1108 mutation was purified and compared with the parental Adh1-1S enzyme. The mutant alcohol dehydrogenase activity had pH optima and substrate specificity similar to those of the parental enzyme, but exhibited somewhat
Alcohol dehydrogenase (ADH) is one of a number of enzymes of glycolysis and fermentation known to be synthesized preferentially under low O2 conditions. We examined levels of Adh1 transcripts and of ADH activity in 5-mm root tips, root axes (the remainder of the seminal root), and shoots of maize
Cinnamyl alcohol dehydrogenase (CAD) is a key enzyme involved in the last step of monolignol biosynthesis. The effect of CAD down-regulation on lignin production was investigated through a transgenic approach in maize. Transgenic CAD-RNAi plants show a different degree of enzymatic reduction
The nucleotide sequence of the gene that encodes the fermentative, multifunctional alcohol dehydrogenase (ADH) in Alcaligenes eutrophus, and of adjacent regions on a 1.8-kilobase-pair PstI fragment was determined. From the deduced amino acid sequence, a molecular weight of 38,549 was calculated for
Young intact plants of maize (Zea mays L. cv INRA 508) were exposed to 2 to 4 kilopascals partial pressure oxygen (hypoxic pretreatment) for 18 hours before excision of the 5 millimeter root apex and treatment with strictly anaerobic conditions (anoxia). Hypoxic acclimation gave rise to larger
The expression of phenylpropanoid and related genes was investigated in bm1, bm2, bm3, and bm4 near-isogenic maize plants at the 4-5 leaf stage using a gene-specific cell wall macro-array. The bm3 mutant, which is mutated in the caffeic acid O-methyltransferase (COMT) gene, exhibited the lowest
We examined the role of alcohol dehydrogenase (ADH) in the metabolism and survival of hypoxic maize (Zea mays L.) root tips. The dependence of the rate of ethanolic fermentation, cytoplasmic pH, and viability on the activity of ADH in maize root tips during extreme hypoxia was determined. Maize
The pattern of change in the activity of alcohol dehydrogenase in maize (Zea mays L.) scutellum during seed germination is not altered by 10 mug/ml cycloheximide or 50 mug/ml actinomycin D. The enzyme does not become density labeled when maize seeds are germinated in the presence of D(2)O and
Transient-expression analysis has shown anaerobic regulation of the alcohol dehydrogenase (Adh1) promoter in a chimeric construct. Chimeric plasmids containing the promoter for the Adh1 gene of maize (Zea mays L.) linked to the coding sequence of the chloramphenicol acetyl transferase (cat) gene
Seedlings of alcohol dehydrogenase 1 null mutants (Adh1-) of Zea mays L., which fail to synthesize alcohol dehydrogenase 1 (ADH1) isozymes, were hypoxically acclimated by 18 h of exposure to an atmosphere of 4% (v/v) O2 in N2 at 25[deg]C. Their ability to tolerate subsequent anoxia by exposure to
Cytochrome P450 (P450 or CYP) monooxygenases play an important role in the oxidation of a number of lipophilic substrates including secondary metabolites in higher plants. Larkin reported that CYP78A1 was preferentially expressed in developing inflorescences of Zea mays (Larkin, Plant Mol. Biol. 25:
Lignin is a major constituent of plant cell walls and indispensable to the normal growth of a plant. However, the presence of lignin complicates the structure of the plant cell walls and negatively influences pulping industry, lignocellulose utilization as well as forage properties. Cinnamyl alcohol
The present investigation was undertaken to identify the possible mode of mechanism that could provide tolerance to maize (Zea mays L.) seedlings under waterlogging. Using cup method, a number of maize genotypes were screened on the basis of survival of the seedlings kept under waterlogging. Two
The purpose of this work was to compare the roles of a newly described mitochondrial dehydrogenase and catalase in ethanol elimination in deer mice deficient in alcohol dehydrogenase (ADH-). Fructose was used because of its well-known ability to stimulate dehydrogenase-dependent ethanol metabolism.