Sida 1 från 184 resultat
A cDNA of pea (Pisum sativum L.) RbcS 3A, encoding a small subunit protein (S) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), has been expressed in Arabidopsis thaliana under control of the cauliflower mosaic virus 35S promoter, and the transcript and mature S protein were detected.
A mutant of Arabidopsis thaliana has been isolated in which ribulose-1,5-bisphosphate carboxylase is present in a nonactivatable form in vivo. The mutation appears to affect carboxylase activation specifically, and not any other enzyme of the photosynthesis or photorespiratory cycles. The effect of
The effect of constitutive and dark-induced expression of Solanum tuberosum phosphoenolpyruvate carboxylase (PEPC) on the opening state of stomata and photosynthetic performance in Arabidopsis thaliana plants was studied. Transcript accumulation analyses of the A. thaliana dark-induced (Din10 and
Photosynthesis and growth to maturity of antisense ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase Arabidopsis thaliana with reduced concentrations of activase relative to wild-type (Wt) plants were measured under low (200 mumol m-2 s-1) and high (600 mumol m-2 s-1) photosynthetic
The multigene family encoding the small subunit polypeptides of ribulose-1,5-bisphosphate carboxylase/oxygenase in the crucifer Arabidopsis thaliana has been isolated and the organization and structure of the individual members determined. The family consists of four genes which have been divided
Analysis of the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase gene and gene products from Arabidopsis thaliana wild-type plants and the Rubisco activase-deficient mutant strain showed that the rca mutation caused GT to be changed to AT at the 5'-splice junction of intron 3 in
CONCLUSIONS
Arabidopsis ppc3 mutant has a growth-arrest phenotype and is affected in phosphate- and salt-stress responses, showing that this protein is crucial under control or stress conditions. Phosphoenolpyruvate carboxylase (PEPC) and its dedicated kinase (PEPC-k) are ubiquitous plant proteins
The CAC1 gene of Arabidopsis thaliana that codes for the biotin carboxyl-carrier subunit of the heteromeric acetyl-coenzyme A carboxylase was isolated and sequenced. CAC1 is a single-copy gene interrupted by six introns. Subcellular immunogold labeling indicates that the biotin carboxyl-carrier
Plants with C4 photosynthesis are efficient in carbon assimilation and have an advantage over C3 photosynthesis. In C4 photosynthesis, the primary CO2 fixation is catalyzed by phosphoenolpyruvate carboxylase (PEPC). Here, we show that overexpression of Zea mays PEPC cDNA, under the control of 35S
The sfr3 mutation causes freezing sensitivity in Arabidopsis thaliana. Mapping, sequencing, and transgenic complementation showed sfr3 to be a missense mutation in ACC1, an essential gene encoding homomeric (multifunctional) acetyl-CoA carboxylase. Cuticle permeability was compromised in the sfr3
Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase; EC 4.1.1.39), the most abundant protein in nature, catalyzes the assimilation of CO(2) (worldwide about 10(11) t each year) by carboxylation of ribulose-1,5-bisphosphate. It is a hexadecamer consisting of eight large and eight small subunits.
We have investigated the role of the circadian clock in the regulation of expression of genes required for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) synthesis, assembly, and activation. Circadian oscillations in RCA (the gene encoding Rubisco activase) and RBCS (the gene encoding
Transcription of the Arabidopsis thaliana gene encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase (RCA) is organ-specific, light-responsive, and regulated by the circadian clock. RCA is transcribed throughout the green parts of the plant, but not in roots and petals.
To investigate the proposed molecular characteristics of sugar-mediated repression of photosynthetic genes during plant acclimation to elevated CO2, we examined the relationship between the accumulation and metabolism of nonstructural carbohydrates and changes in ribulose-1,5-bisphosphate
PEPC [PEP(phosphoenolpyruvate) carboxylase] is a tightly controlled cytosolic enzyme situated at a major branchpoint in plant metabolism. Accumulating evidence indicates important functions for PEPC and PPCK (PEPC kinase) in plant acclimation to nutritional P(i) deprivation. However, little is known