Sida 1 från 248 resultat
Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus, causing severe central nerve system diseases without specific treatments. The NS2B-NS3 protease of flaviviruses mediates several cleavages on the flavivirus polyprotein, being believed to be a target for antiviral therapy. NS2B is the
The Venezuelan equine encephalitis virus (VEEV) nonstructural protein 2 (nsP2) cysteine protease (EC 3.4.22.-) is essential for viral replication and is involved in the cytopathic effects (CPE) of the virus. The VEEV nsP2 protease is a member of MEROPS Clan CN and characteristically contains a
Alphavirus replication and propagation is dependent on the protease activity of the viral nsP2 protein, which cleaves the nsP1234 polyprotein replication complex into functional components. Thus, nsP2 is an attractive target for drug discovery efforts to combat highly pathogenic alphaviruses.
The infectivity of flavivirus particles depends on a maturation process that is triggered by the proteolytic cleavage of the precursor of the M protein (prM). This activation cleavage is naturally performed by ubiquitous cellular proteases of the furin family, which typically recognize the
The sequences of the protease domain of the tick-borne encephalitis (TBE) virus NS3 protein have two amino acid substitutions, 16 R→K and 45 S→F, in the highly pathogenic and poorly pathogenic strains of the virus, respectively. Two models of the NS2B-NS3 protease complex for the highly pathogenic
Processing of Japanese encephalitis (JE) virus non-structural (NS) proteins expressed by recombinant vaccinia viruses was analysed to characterize the responsible viral protease. Analysis of the processing of polyprotein NS2A-2B-3' containing the N-terminal 322 amino acids of NS3 revealed products
OBJECTIVE
Granulomatous amoebic encephalitis (GAE) is a serious human infection with fatal consequences, however, the pathogenic mechanisms associated with this disease remain unclear. Several lines of evidence suggest that haematogenous spread is a prerequisite for Acanthamoeba encephalitis but it
Japanese encephalitis virus (JEV) is a single-stranded and positive-sense RNA, which has a single ORF (open reading frame), encoding a polyprotein precursor. Non-structural protein 3 (NS3) plays an important role in processing the polyprotein precursor and has become an important drug target of
Mature protein C of tick-borne encephalitis virus (TBEV) is cleaved from the polyprotein precursor by the viral NS2B/3 protease (NS2B/3(pro)). We showed previously that replacement of the NS2B/3(pro) cleavage site at the C terminus of protein C by the foot-and-mouth disease virus (FMDV) 2A StopGo
Several mutations were introduced into the putative serine protease domain of the tick-borne encephalitis virus NS3 protein and into a possible internal cleavage site within the protein. The influence of these mutations on proteolytic activity of NS3 protein and NS3' protein formation was tested in
We report herein the study of the cleavage fragments generated by autoproteolysis of the St. Louis encephalitis virus recombinant protease. The cleavage sites leading to truncated forms were identified by microsequencing, which revealed an unexpected altered specificity of the recombinant proteinase
Japanese encephalitis virus (JEV), a mosquito‑borne flavivirus, causes acute encephalitis and nervous damage. Previous studies have demonstrated that JEV induces apoptosis in infected cells. However, to date the mechanisms of JEV‑induced apoptosis are unclear. In order to identify the viral proteins
Murray Valley encephalitis virus is a member of the flavivirus group, a large family of single-stranded RNA viruses, which cause serious disease in all regions of the world. Unfortunately, no suitable antivirals are available, and there are commercial vaccines for only three flaviviruses. The
In a previous study from our group, a novel compound, namely CW‑33 (ethyl 2‑(3',5'‑dimethylanilino)‑4‑oxo‑4,5‑dihydrofuran‑3‑carboxylate) was identified that exhibited antiviral activity for Japanese encephalitis virus (JEV). The viral NS2B‑NS3 serine protease serves an important role in
The Murray Valley encephalitis virus (MVEV) and the West Nile virus (WNV) are mosquito-borne single-stranded RNA Flaviviruses responsible for many cases of viral encephalitis and deaths worldwide. The former is endemic in north Australia and Papua New Guinea while the latter has spread to different