6 resultat
OBJECTIVE
To evaluate the published data on the effectiveness and safety of amphotericin B lipid complex (ABLC) for the treatment of invasive mycosis and to evaluate data describing the pharmacologic properties and pharmacokinetic behavior of ABLC in both animals and humans.
METHODS
A MEDLINE search
Coxiella burnetii, the etiological agent of human Q fever, occupies a unique niche inside the host cell, where it replicates in a modified acidic phagolysosome or parasitophorous vacuole (PV). The PV membrane is cholesterol-rich, and inhibition of host cholesterol metabolism negatively impacts PV
Treatment and control of malaria have become more difficult with the spread of drug-resistant parasites and insecticide-resistant mosquito vectors. In the search for new antimalarial drugs, ethnopharmacological sources should merit more attention. Establishing the safety of traditional herbal
Liposomal amphotericin B (AmBisome) is a lipid-associated formulation of the broad-spectrum polyene antifungal agent amphotericin B. It is active against clinically relevant yeasts and moulds, including Candida spp., Aspergillus spp. and filamentous moulds such as Zygomycetes, and is approved for
METHODS
Since the last two decades, the incidence of invasive fungal infections has drastically increased. It becomes urgent to enlarge the panel of antifungal drugs with more potent activity and less toxicity. Since the target of all previously available antifungal agents is the synthesis of
Amphotericin B (AmB) is a crucial agent in the management of serious systemic fungal infections. In spite of its proven track record, its well-known side effects and toxicity will sometimes require discontinuation of therapy despite a life-threatening systemic fungal infection. The mechanism of