Sida 1 från 242 resultat
In tumor microenvironment, macrophages as a polarized M2 population promote tumor progression via releasing multiple cytokines and chemokines. A brown seaweed fucose-rich polysaccharide, fucoidan has antitumor activity and immune modulation through affecting tumor cells and lymphocytes. Here, we
Fucoidan is a fucose-rich polysaccharide that has gained attention for its various anticancer properties. However, the effect and underlying mechanism of fucoidan on triple-negative breast cancer (TNBC) are still unknown. Herein, we investigated the anticancer potential of fucoidan from Laminaria
Combination chemotherapy with oxaliplatin plus 5-fluorouracil/leucovorin (FOLFOX) or irinotecan plus 5-fluorouracil/leucovorin (FOLFIRI) has become a standard regimen for advanced or recurrent colorectal cancer. Numerous studies have reported that long-term use of FOLFOX or FOLFIRI leads to better
Anthocyanins, commonly extracted from aronia, exhibit excellent in antioxidant activity and anti-cancer activity. However, anthocyanins are not only easily oxidized in water but also rapidly disappear from the body, thus requiring a large amount of administration. To solve these limitations, we
Natural nanostructure materials have been involved in antitumor drug delivery systems due to their biocompatibility, biodegradation and bioactive properties.These materials have contributed to advanced drug delivery systems in the roles of both bioactive Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death in Asia. HCC is less sensitive to chemotherapy and is known to express multidrug resistant genes to acquire resistance to chemotherapeutic agents, therefore the development of a potent HCC suppressor is essential
A therapeutic reduced graphene oxide (RGO) is synthesized by using fucoidan (Fu) as the reducing and surface functionalizing agent. The synthesized Fu-RGO exhibits promising characteristics for therapeutic applications such as high dispersity in aqueous media, biocompatibility, selective
To produce marine-origin nanoparticles (NPs) aiming to develop more effective and tolerated therapies for breast cancer.
NPs based in two marine-origin polymers (fucoidan and chitosan) were prepared by polyelectrolyte complexation, for the delivery of an antitumor drug model (gemcitabine
In order to develop immuno- and chemotherapy agents, self-organized acetylated fucoidan (AcFu) nanoparticles were designed. Doxorubicin (DOX), used as a model drug, was loaded into the AcFu nanoparticles by dialysis. The DOX loading efficacy and content were 71.1% and 3.6%, respectively.
To evaluate potential hepatic metabolism-mediated drug interactions with fucoidan from Undaria pinnatifida (UPF) or Fucus vesiculosus (FVF) and potential growth inhibition activity with either fucoidan alone or with chemotherapy. In vivo studies were done to confirm safety and investigate
The presence of occult metastases at the time of diagnosis together with the lack of effective chemotherapies pose a dire need for designing new and targeted therapeutics for pancreatic cancer. Fucoidans from brown algae can be regarded as potential candidates in view of their antioxidant,
The sulfated polysaccharide fucoidan displays excellent anticancer properties with low toxicity in many kinds of cancers. However, its detailed pharmacological effect and mechanism of action in gastric carcinoma remains unclear. In this study, we found that fucoidan could suppress gastric cancer
Immunotherapeutic nanoparticles (NPs) could be a viable option for delivering cytotoxic agents in a manner which suppresses their toxic manifestations. Doxorubicin (DOX) loaded NPs were prepared using fucoidan (FCD), an immunomodulatory polysaccharide and evaluated against cancer. FCD was
Fucoidan is a marine polymer extracted from diverse types of brown algae. This polysaccharide showed great potential towards treatment of different types of cancer. In this study, the activity of fucoidan extracted from Undaria Pinnatifida was investigated against pancreatic cancer (one of the most
The aim of this study was to develop and compare polymeric micelles of fucoidan, a sulfated polysaccharide, and hydrophobic drugs such as paclitaxel and curcumin. Paclitaxel and curcumin are both known for their medicinal properties, including anticancer efficacy. However, their very low water