Sida 1 från 18 resultat
BACKGROUND
Isatis indigotica is a traditional Chinese medicine. Its dried roots named "ban lan gen" in Chinese, are used for clinical treatment of virus infection, tumor, inflammation with a long history. However, its anti-influenza active ingredient and the underlying mechanism remain unclear. In
OBJECTIVE
It has been suggested that lignan intake may decrease the risk for cardiovascular disease (CVD) by modifying traditional risk factors as well as aortic stiffness. However, the role of dietary lignans on the vascular system is largely unknown. The objective was to investigate whether
During aging, cells secrete molecules called senescence-associated secretory phenotype (SASP). They constitute chronic low-grade inflammation environment to adjacent cells and tissues. In order to find inhibiting agents of SASP formation, 113 plant constituents were incubated with BJ fibroblasts for
The influenza A virus is an acute contagious pathogen that affects the human respiratory system and can cause severe lung disease and even death. Lariciresinol-4-β-D-glucopyranoside is a lignan that is extracted from Isatis indigotica, which is a medicinal herb plant that was commonly applied to
Coptis japonica Makino (Ranunculaceae) is known to possess several biological activities such as anti-inflammatory effects. In this study, five lignans, isolariciresinol (1), lariciresinol glycoside (2), pinoresinol (3), pinoresinol glycoside (4) and syringaresinol glycoside (5), isolated from the
In order to find potential therapeutic agents on lung inflammatory conditions, the extracts of Acanthopanax divaricatus var. albeofructus were prepared and its constituents were isolated. They include lignans such as (+)-syringaresinol (1), acanthoside B (2), salvadoraside (3) and acanthoside D (4),
BACKGROUND
Perovskia atriplicifolia Benth (Labiantae) has long been used as a traditional herbal medicine for anti-inflammation in Pakistan; this prompted us to isolate anti-inflammatory compounds from this plant.
OBJECTIVE
The objective of this study was to isolate and characterize the
Four taxoids (taxusin, baccatin VI, baccatin III and 1beta-hydroxybaccatin I) and five lignans (lariciresinol, taxiresinol, 3'-demethylisolariciresinol-9'-hydroxyisopropylether, isolariciresinol and 3-demethylisolariciresinol) were isolated from the heartwood of Taxus baccata L. (Taxaceae) growing
METHODS
In the present study, we evaluated the anti-inflammatory properties of several plant lignans most commonly distributed in foods. 7-Hydroxymatairesinol (HMR) and its major isomer 7-hydroxymatairesinol 2 (HMR2), lariciresinol, secoisolariciresinol, and pinoresinol, isolated from Norway spruce
OBJECTIVE
To investigate chemical constituents of the stems and branches of Adina polycephala and their pharmacological activities.
METHODS
The constituents were isolated by a combination of various chromatographic techniques including column chromatography on silica gel, Sephadex LH-20, and C-18,
Daylilies (Hemerocallis spp.) have been used as food and in traditional medicine for thousands of years in eastern Asia. The leaves of the plant are used in the treatment of inflammation and jaundice. In studies of the aqueous methanol extracts of fresh Hemerocallis fulva leaves,
Lignans constitute a group of phytochemicals, which are produced by oxidative dimerization of two phenylpropanoid units. Furfuran type lignans such as secoisolariciresinol, matairesinol, lariciresinol or pinoresinol are widely distributed in edible plants, and most of those dietary lignans are
Insecticide synergists biochemically inhibit insect metabolic enzyme activity and are used both to increase the effectiveness of insecticides and as a diagnostic tool for resistance mechanisms. Considerable attention has been focused on identifying new synergists from phytochemicals with recognized
Dietary lignans show some promising health benefits, but little is known about their fate and activities in the small intestine. The purpose of this study was thus to investigate whether plant lignans are taken up by intestinal cells and modulate the intestinal inflammatory response using the Caco-2
OBJECTIVE
To study the bioactive constituents of the fresh rhizome of Pinellia ternata, and provide the scientific basis for quality control.
METHODS
Various chromatographic techniques were used to separate and purify the chemical constituents, and their chemical structures were determined on the