Sida 1 från 24 resultat
Two major alpha-glucan phosphorylases (I and II) from leaves of the C(4) plant corn (Zea mays L.) were previously shown to be compartmented in mesophyll and bundle sheath cells, respectively (C Mateyka, C Schnarrenberger 1984 Plant Sci Lett 36: 119-123). The two enzymes were separated by
In connection with the problem of the well-known stability of statolith starch, some enzymes of starch metabolism have been investigated qualitatively in the root cap cells of Zea mays L. No activity of granule-bound UDPG- and ADPG-transglucosylase (EC 2.4.1.21) could be found. In the soluble enzyme
The intercellular localization of enzymes involved in starch metabolism and the kinetic properties of ADPglucose pyrophosphorylase were studied in mesophyll protoplasts and bundle sheath strands separated by cellulase digestion of Zea mays L. leaves. Activities of starch synthase, branching enzyme,
The activity and allosteric properties of plant phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) are controlled posttranslationally by specific reversible phosphorylation of a strictly conserved serine residue near the N-terminus. This up/down-regulation of PEPC is catalyzed by a dedicated and
Starch granules with associated metabolites were isolated from immature Zea mays L. endosperm by a nonaqueous procedure using glycerol and 3-chloro-1,2-propanediol. The soluble extract of the granule preparation contained varying amounts of neutral sugars, inorganic phosphate, hexose and triose
Cytochemical changes during the early development of maize caryopsis are reported. Changes in the localization of different reserve substances (e.g. polysaccharides, proteins, nucleic acids and lipids) and enzymes (acid phosphatase, esterase, lipase, phosphorylase, succinate dehydrogenase,
Foliar applications of 2 milligrams per liter of 2-chloro-4,6-bis (ethylamino)-s-triazine, 2-methylmercapto-4-ethylamino-6-isobutylamino-s-triazine, and 2-methoxy-4-isopropylamino-6-butylamino-s-triazine caused increases in the activities of starch phosphorylase, pyruvate kinase, cytochrome oxidase,
The aim of this study was the evaluation of the effects of a subchronic exposure to malathion, an organophosphorus (OP) insecticide, on plasma glucose and hepatic enzymes of glycogenolysis and glycolysis in rats in vivo. Malathion was administered intragastrically by stomach tube in the amount of 1
Two phosphorylases have been found in the endosperm of Zea mays. Phosphorylase I is found through all stages of endosperm development and seed germination investigated. The other enzyme, phosphorylase II appears only at the stage of rapid starch biosynthesis and is not found during germination. At
Amyloplast is the site of starch synthesis in the storage tissue of maize (Zea mays). The amyloplast stroma contains an enriched group of proteins when compared with the whole endosperm. Proteins with molecular masses of 76 and 85 kD have been identified as starch synthase I and starch branching
Soluble ADPglucose-alpha-glucan 4-alpha-glucosyltransferase (starch synthetase), ADPglucose pyrophosphorylase, UDPglucose pyrophosphorylase and phosphorylase were assayed in extracts from developing kernels of maize (Zea mays). Normal, waxy and amylose-extender maize at stages of development ranging
The multiple forms of branching enzyme (BE) from developing maize (Zea mays) endosperm were purified by modification of previous procedures such that amylase activity could be eliminated completely from the BE preparation. Three distinct assays for BE activity (phosphorylase a stimulation assay, BE
Immunological and biochemical evidence has been obtained for an interaction of maize protein phosphatase 2A (PP2A) holoenzyme with tubulin. Tubulin co-purifies with maize seedling PP2A. Affinity chromatography of the maize PP2A preparation on immobilized tubulin revealed two peaks of phosphorylase
Isolated chloroplasts from the bundle sheath cells show considerable activity of the ADPG- and UDPG-pyrophosphorylase (EC 2.7.7.9), ADPG- and UDPG-transglucosylase (EC 2.4.1.21), and the starch phosphorylase (EC 2.4.1.1). In chloroplasts of the palisade cells, on the other hand, only the
The present study was conducted to evaluate the adverse effects of chlorpyrifos on the key enzymes of carbohydrate metabolism in liver, and also to assess the role of zinc under these toxic conditions. Male Sprague-Dawley (SD) rats received either oral chlorpyrifos treatment (13.5 mg/kg body weight