8 resultat
BACKGROUND
Phthalates are synthetic industrial compounds capable of disrupting endocrine system. Effects of phthalates depend on dosage, duration of action and stage of development of the individual, thus making the fetus, newborn, and children at puberty the most vulnerable groups. METABOLISM OF
BACKGROUND
Some phthalic acid esters (PAEs) and nonylphenol (NP) are endocrine-disrupting chemicals (EDCs) that are widely used in consumer products. Consequently, the general population is exposed simultaneously to both groups of chemicals.
OBJECTIVE
To investigate the single- and co-exposure
When the homogenate of fresh tea tree leaves was fermented to produce black tea beverage, the Colletotrichum gloeosporioides (main pathogen or endophyte of Camellia sinensis) may be mixed into the fermentation liquor. However, it was unclear whether C. gloeosporioides-contaminated tea beverage would
Background: Experimental evidence suggests that exposures to phthalates and bisphenols may interfere with processes related to glucose and lipid metabolism, insulin sensitivity, and body weight. Few studies have considered the possible
BACKGROUND
Di-2-ethylhexylphthalate (DEHP) is an ester of phthalic acid commonly found in processed foods. DEHP may contribute to obesity and insulin resistance in children and adolescents, yet dietary exposures have been not been studied in this vulnerable subpopulation.
OBJECTIVE
To assess diet
Phthalates (diesters of phthalic acid) are widely used as plasticizers and additives in many consumer products. Laboratory animal studies have reported the endocrine-disrupting and reproductive effects of phthalates, and human exposure to this class of chemicals is a concern. Several phthalates have
OBJECTIVE
Both bisphenol A (BPA) and phthalates are known endocrine-disrupting chemicals for which there is widespread general population exposure. Human exposure occurs through dietary and non-dietary routes. Although animal studies have suggested a potential role of these chemicals in obesity,
Phthalic acid esters are established as endocrine disruptors. The study aimed to evaluate the association between urinary phthalate metabolites and prostate cancer occurrence.The study was based on the Taiwan Community-Based Cancer Screening Program, which