Sida 1 från 348 resultat
Progesterone displays a strong potential for the treatment of neonatal hypoxic-ischemic encephalopathy since it has been shown to be beneficial in the treatment of the central nervous system injuries in adult animals. Here, we evaluated the effects of the administration of progesterone (10 mg/kg) in
Hypoxia has been suggested to enhance progesterone (P4) synthesis in luteinizing granulosa cells (GCs), but the mechanism is unclear. The present study was designed to test the hypothesis that the hypoxia-induced increase in P4 synthesis during luteinization in bovine GCs is mediated by
Neonatal hypoxia-ischemia (HI) is the leading cause of mortality and morbidity in newborns, occurring in approximately 2% of live births. Neuroprotective actions of progesterone (PROG) have already been described in animal models of brain lesions. However, PROG actions on neonates are still
Hypoxia affects the development and/or progression of several retinopathies. Decidual protein induced by progesterone (DEPP) has been identified as a hypoxia-responsive gene that may be part of cellular pathways such as autophagy and connected to retinal diseases. To increase our
Perinatal hypoxia is a frequent birth complication, and although its early consequences on brain development have been well studied, few studies address any long-term effects. Postnatal insults producing small disturbances in endocrine function can have marked and long-lasting effects. In the
To determine whether hypoxia has an effect on luteinization, we examined the influence of hypoxia on a model of bovine luteinizing and non-luteinizing granulosa cell culture. The granulosa cells were obtained from small antral follicles (≤ 6 mm in diameter). To induce luteinization, the cells were
The present study evaluated the ability of progesterone to alleviate the synaptic transmission disturbed by hypoxia in the nucleus tractus solitarius (NTS). Hypoxia with N2 inhibited spontaneous and tractus solitarius-evoked excitatory postsynaptic currents (sEPSCs and eEPSCs) in NTS
We used whole-body plethysmography and pulse oximetry to assess the effects of acute administration of progesterone (4 mg/kg, i.p.) on normoxic ventilation, hypoxic ventilatory response (HVR: FiO(2)=12% over 20 min), metabolism, and apnea frequency in rats on postnatal (P) days P1, P4, P7, and P12.
The respiratory stimulant caffeine is the most frequently used xanthine (theophylline or aminophylline) for the treatment of apnea in premature infants. It decreases but does not eliminate apnea. In most cases such decreases is insufficient to prevent the use of artificial ventilation. Progesterone
The nucleus tractus solitarius (NTS) is a relay nucleus that integrates peripheral chemoreceptor input in response to hypoxia and hence influences the generation of respiratory rhythm. Several studies have shown that administration of progesterone stimulates ventilatory responses to hypoxia. There
The underlying mechanism regulating hypoxia induced alteration in female steroid hormones is first time explored in this study. To understand the mechanistic approach, female Sprague- Dawley rats were exposed to acute and chronic hypobaric hypoxia (282 mm-Hg, ~7620 m, 6 hours, 3 and 7 days). Estrous
17β-Estradiol (E2) and progesterone (P) are neuroprotective in acute brain injury by attenuating neuropathophysiological processes and regulating local glial function. Besides controlling brain-intrinsic immune responses, astrocytes are cellular targets for sex steroids in health and disease and
A major role of the corpus luteum (CL) is to produce progesterone (P4). The CL has immature vasculature shortly after ovulation, suggesting it exists under hypoxic conditions. To elucidate the mechanism involved in regulation of luteal cell function during CL development, we compared the effect of
In ruminants, progesterone (P4) from the ovary and interferon tau (IFNT) from the elongating blastocyst regulate expression of genes in the endometrium that are hypothesized to be important for uterine receptivity and blastocyst development. These studies determined effects of the estrous cycle,
Objectives: This study aims to evaluate the protective effects of progesterone on white matter injury and brain immaturity in neonatal rats with chronic hypoxia.
Methods: