Sida 1 från 69 resultat
The human induced pluripotent stem cell (hiPSC) line RP1-FiPS4F1 generated from the patient with autosomal recessive retinitis pigmentosa (arRP) caused by homozygous Ser331Cysfs*5 mutation in Mer tyrosine kinase receptor (MERTK) was genetically corrected using CRISPR/Cas9 system. Two isogenic hiPSCs
Recombinant adeno-associated viral (rAAV) vector-mediated gene therapy is being developed to treat X-linked retinitis pigmentosa (XLRP) in patients with mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene. In preparation for a clinical gene therapy trial, we conducted dose
Two members of a family with autosomal dominant retinitis pigmentosa were found to have a cytosine-to-thymine mutation in the second nucleotide of codon 267 in the rhodopsin gene that resulted in a proline-to-leucine change. Two members of another family with autosomal dominant retinitis pigmentosa
The Royal College of Surgeons (RCS) rat is a well-characterized model of autosomal recessive retinitis pigmentosa (RP) due to a defect in the retinal pigment epithelium (RPE). It is homozygous for a null mutation in the gene encoding , a receptor tyrosine kinase found in RPE cells, that is required
We investigated the effects of various retinal laser therapies on preservation of the photoreceptors in an animal model of Mer tyrosine kinase receptor (MERTK)-related retinitis pigmentosa (RP). These modalities included photocoagulation with various pattern densities, selective RPE Retinitis pigmentosa (RP) is a common inherited retinal disease for which effective treatment is not yet known. This review sought to analyze the available medical literature covering the efficacy of different forms of laser treatment for RP in laboratory and clinical trials. The PubMed database was
Mutations in the gene encoding the phosphodiesterase 6 alpha subunit (PDE6A) account for 3-4% of autosomal recessive retinitis pigmentosa (RP), and currently no treatment is available. There are four animal models for PDE6A-RP: a dog with a frameshift truncating mutation (p.Asn616ThrfsTer39) and
BACKGROUND
Retinitis pigmentosa (RP) is one of the most common ophthalmic disorders affecting one in approximately 5000 people worldwide. A nuclear family was recruited from the Punjab province of Pakistan to study the genetic basis of autosomal recessive RP.
METHODS
All affected individuals
Retinitis pigmentosa is a major cause of visual impairment and blindness, affecting millions of people worldwide. The mechanisms of and effective treatments for the disease, however, remain to be further investigated. The Royal College of Surgeons rat is one of the most widely used animal models for
The receptor tyrosine kinase Mer is expressed by retinal pigment epithelial (RPE) cells and participates in photoreceptor outer-segment phagocytosis, a process enabling membrane renewal. Mutations in the gene encoding MERTK cause blinding retinitis pigmentosa in humans. Targeted Mertk disruption in
OBJECTIVE
Dopamine serves a variety of functions in the retina. Abnormalities of the retinal dopaminergic system have been described in the Royal College of Surgeons (RCS) rat as well as other models of retinal degeneration. Dopamine has been implicated in several retinal dysfunctions of retinitis
The retinal degeneration 10 (rd10) mouse is a well-characterized model of autosomal recessive retinitis pigmentosa (RP), which carries a spontaneous mutation in the β subunit of rod cGMP-phosphodiesterase (PDEβ). Rd10 mouse exhibits photoreceptor dysfunction and rapid rod photoreceptor degeneration
Retinitis pigmentosa (RP) is one of the major types of hereditary retinal dystrophies with extreme genotypic heterogeneity. To date, more than 80 genes have been identified to be associated with RP in human.Here, we presented a clinical genetic study of