9 resultat
Hibiscus rosa-sinensis Linn., family Malvaceae, is an attractive horticultural plant originating from China. Five viruses infecting H. rosa-sinensis that have been characterized previously are Hibiscus chlorotic ringspot virus (HCRSV, genus Carmovirus), Hibiscus latent ringspot virus (HLRSV, genus
Ralstonia pseudosolanacearum (Ralstonia solanacearum phylotype I) isolates found in stunted, yellowing, and wilted ornamental rose (Rosa spp.) were assessed for their pathogenic ability in two rose cultivars (cv. "Armando" and cv. "Red Naomi") and in four solanaceous crops: tomato (Solanum
A new begomovirus, tentatively named hibiscus yellow vein leaf curl virus (HYVLCV), was identified in Hibiscus rosa-sinensis plants showing symptoms of leaf curl, yellow vein, and vein enation on the undersides of the leaf in Taiwan. Sequence analysis of the full-length HYVLCV genome from the
Hibiscus spp. are popular ornamental plants in New Zealand. The genus is susceptible to Hibiscus chlorotic ringspot virus (HCRSV), a member of the genus Carmovirus, which has been reported in Australia, El Salvador, Singapore, the South Pacific Islands, Taiwan, Thailand, and the United States (1-4).
Virus-induced gene silencing (VIGS) is a useful tool for functional characterization of genes in plants. Unfortunately, the efficiency of infection by Tobacco rattle virus (TRV) is relatively low for some non-Solanaceae plants, which are economically important, such as rose (Rosa sp.). Here, to
Impatiens necrotic spot virus (INSV) (genus Tospovirus, family Bunyaviridae) has been detected in commercial nurseries and field-grown ornamentals in Mahallat (Markazi) and Tehran provinces of Iran. INSV on ornamentals was first reported in 1990 (2). Ornamental plants with small necrotic spots, leaf
The double-flower phenotype has been selected by humans for its attractiveness in various plant species and it is of great commercial value for the ornamental market. In this paper we investigated the genetic determinant of the dominant double-flower trait in carnation, petunia and Rosa rugosa,
This study investigates the larvicidal potential of indigenous plant extracts from commonly used medicinal herbs as an environmentally safe measure to control the filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). The early fourth-instar larvae of C. quinquefasciatus, reared in the
"Bead beating" is commonly used to release DNA from cells for genomic studies but it was used here to prepare suspensions of plant nuclei for measurement of DNA amounts by flow cytometry. Plant material was placed in 2-ml screw-capped tubes containing beads of zirconia/silica (2.5 mm diameter) or