7 resultat
Background: Oxidative stress is crucial player in skeletal muscle atrophy pathogenesis. S-allyl cysteine (SAC), an organosulfur compound of Allium sativum, possesses broad-spectrum properties including immuno- and redox-modulatory impact.
The effects of n-acetyl cysteine (NAC), s-allyl cysteine (SAC), s-ethyl cysteine, s-methyl cysteine and s-propyl cysteine (SPC) activity on Balb/cA mice against diabetic complications were examined. These complications included hyperglycemia, hyperlipidemia, oxidation stress, blood coagulation, and
S-allyl cysteine (SAC), a sulfur containing amino acid derived from garlic, has been reported to have antioxidant, anti-cancer, antihepatotoxic and neurotrophic activity. This study was designed to examine the pre-treatment effects of SAC on cognitive deficits and oxidative damage in the hippocampus
Elevated levels of inflammatory molecules are key players in muscle wasting/atrophy leading to human morbidity. TNFα is a well-known pro-inflammatory cytokine implicated in the pathogenesis of muscle wasting under diverse clinical settings. S-allyl cysteine (SAC), an active component of garlic
Retinal pigment epithelium (RPE) degenerative death is an evident hallmark of advanced age-related macular degeneration (AMD). The present study aims to evaluate the protective effects of S-allyl L-cysteine (SAC), a bioactive component from aged garlic extracts, on the oxidative In spite of the tremendous stride in modern medicine, conventional drugs used in the hepatotoxic management are mostly inadequate. The present study aims in the synthesis of novel Schiff base compound derived using s-allyl cystiene and methionine. The newly synthesized compound,
According to the recent pharmacological findings, garlic is a preventive rather than therapeutic. Epidemiological studies in China, Italy and USA showed the inverse relationship between stomach and colon cancer incidences and dietary garlic intake. Anti-carcinogenic activities of garlic and its