Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Analytical and Bioanalytical Chemistry 2011-Jun

A GC/MS-based metabolomic approach for diagnosing citrin deficiency.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Tomiko Kuhara
Morimasa Ohse
Yoshito Inoue
Arthur J L Cooper

Maneno muhimu

Kikemikali

Citrin is the hepatic mitochondrial aspartate-glutamate carrier that is encoded by the gene SLC25A13. Citrin deficiency often leads to hyperammonemia, for which the current treatment concept is different from that for primary hyperammonemias. Metabolite level diagnosis, often referred to as chemical diagnosis, is not always successful in identifying citrin deficiency immediately or in a timely fashion. We previously made the chemical diagnosis of citrin deficiency in ten patients from nine families. In order to devise a more rapid and more accurate chemical diagnosis of this disorder than is currently available, we reinvestigated the gas chromatography/mass spectrometry-based urine metabolome in these patients. In patients aged 2 to 5 months, prominent biomarkers detected included one or more of the following metabolites: tyrosine, p-hydroxyphenyllactate, p-hydroxyphenylpyruvate, and N-acetyltyrosine, galactose, galactitol and galactonate, glucose, glucitol, and cystathionine. These biomarkers are less prominent in older patients, but are not increased in argininosuccinate synthetase deficiency or other hyperammonemias. α-Ketoglutaramate (KGM), a recently recognized urinary biomarker of primary hyperammonemias associated with defects of the urea cycle, was increased in most patients with citrin deficiency studied here in spite of normal urinary levels of glutamine (the immediate precursor of KGM), 5-oxoproline, glutamate, aspartate, and asparagine. Other important urinary biomarkers that should be measured for differential diagnosis of hyperammonemias, including orotate, uracil, and β-ureidopropionate, were not increased. The presence of citrulline and citrulline-derived metabolites was noted in all cases. The present study shows that noninvasive urine metabolomics, together with an analysis of selected metabolites or groups of metabolites, provides a more reliable and rapid chemical diagnosis of citrin deficiency than was previously available and more readily differentiates this disorder from other hyperammonemic syndromes.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge