Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
British Journal of Pharmacology 2008-Aug

Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
I Wessler
C J Kirkpatrick

Maneno muhimu

Kikemikali

Animal life is controlled by neurons and in this setting cholinergic neurons play an important role. Cholinergic neurons release ACh, which via nicotinic and muscarinic receptors (n- and mAChRs) mediate chemical neurotransmission, a highly integrative process. Thus, the organism responds to external and internal stimuli to maintain and optimize survival and mood. Blockade of cholinergic neurotransmission is followed by immediate death. However, cholinergic communication has been established from the beginning of life in primitive organisms such as bacteria, algae, protozoa, sponge and primitive plants and fungi, irrespective of neurons. Tubocurarine- and atropine-sensitive effects are observed in plants indicating functional significance. All components of the cholinergic system (ChAT, ACh, n- and mAChRs, high-affinity choline uptake, esterase) have been demonstrated in mammalian non-neuronal cells, including those of humans. Embryonic stem cells (mice), epithelial, endothelial and immune cells synthesize ACh, which via differently expressed patterns of n- and mAChRs modulates cell activities to respond to internal or external stimuli. This helps to maintain and optimize cell function, such as proliferation, differentiation, formation of a physical barrier, migration, and ion and water movements. Blockade of n- and mACHRs on non-innervated cells causes cellular dysfunction and/or cell death. Thus, cholinergic signalling in non-neuronal cells is comparable to cholinergic neurotransmission. Dysfunction of the non-neuronal cholinergic system is involved in the pathogenesis of diseases. Alterations have been detected in inflammatory processes and a pathobiologic role of non-neuronal ACh in different diseases is discussed. The present article reviews recent findings about the non-neuronal cholinergic system in humans.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge