Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Physiology 2016-Mar

Age protects from harmful effects produced by chronic intermittent hypoxia.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
M Quintero
E Olea
S V Conde
A Obeso
T Gallego-Martin
C Gonzalez
J M Monserrat
A Gómez-Niño
S Yubero
T Agapito

Maneno muhimu

Kikemikali

Obstructive sleep apnoea (OSA) affects an estimated 3–7% of the adult population, the frequency doubling at ages >60–65 years. As it evolves, OSA becomes frequently associated with cardiovascular, metabolic and neuropsychiatric pathologies defining OSA syndrome (OSAS). Exposing experimental animals to chronic intermittent hypoxia (CIH) can be used as a model of the recurrent hypoxic and O2 desaturation patterns observed in OSA patients. CIH is an important OSA event triggering associated pathologies; CIH induces carotid body (CB)-driven exaggerated sympathetic tone and overproduction of reactive oxygen species, related to the pathogenic mechanisms of associated pathologies observed in OSAS. Aiming to discover why OSAS is clinically less conspicuous in aged patients, the present study compares CIH effects in young (3–4 months) and aged (22–24 months) rats. To define potential distinctive patterns of these pathogenic mechanisms, mean arterial blood pressure as the final CIH outcome was measured. In young rats, CIH augmented CB sensory responses to hypoxia, decreased hypoxic ventilation and augmented sympathetic activity (plasma catecholamine levels and renal artery content and synthesis rate). An increased brainstem integration of CB sensory input as a trigger of sympathetic activity is suggested. CIH also caused an oxidative status decreasing aconitase/fumarase ratio and superoxide dismutase activity. In aged animals, CIH minimally affected CB responses, ventilation and sympathetic-related parameters leaving redox status unaltered. In young animals, CIH caused hypertension and in aged animals, whose baseline blood pressure was augmented, CIH did not augment it further. Plausible mechanisms of the differences and potential significance of these findings for the diagnosis and therapy of OSAS are discussed.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge