Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical and Biophysical Research Communications 2018-Dec

Anti-hypoxic effect of dihydroartemisinin on pulmonary artery endothelial cells.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Hua Yu
Jingjing Liu
Yizhi Dong
Min Xu
Le Xu
Huaqin Guan
Xiaoru Xia
Liangxing Wang

Maneno muhimu

Kikemikali

BACKGROUND

Previous studies have found that dihydroartemisinin (DHA) has multiple functions such as anti-inflammatory, anti-tumor in addition to anti-malarial effects. Effect of DHA on monocrotaline-induced pulmonary hypertension in rats has been reported, while the specific mechanism is not known.

METHODS

A hypoxic model was established with human pulmonary arterial endothelial cells (HPAECs) to investigate the possible mechanism of DHA. Effects of DHA on proliferation of HPAECs were evaluated by CCK-8 and EdU assay. Effects of DHA on cell oxidative stress, cell migration, angiogenesis, cell cycle and autophagy, as well as the possible underlying mechanism were also detected by using the established normoxia/hypoxia cell models.

RESULTS

DHA significantly inhibited hypoxia induced increase of HPAECs proliferation in a dose dependent manner, migratory ability and angiogenic ability. DHA also significantly reversed hypoxia induced oxidative stress as a reduction of ROS and NO, and an increase of SOD. Autophagosomes, LC3B protein and apoptotic proteins were significantly increased in DHA treated hypoxic HPAECs. Autophagy inhibitor 3-Methyladenine diminishes the anti-hypoxia effects of DHA on cell proliferation, migration, and autophagy and apoptosis protein expression in HPAECs.

CONCLUSIONS

DHA effectively inhibits hypoxia induced increase of cell proliferation, migration, and oxidative stress in HPAECs, and autophagy may be the underlying mechanism of DHA.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge