Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Archives of Toxicology 2016-Sep

Anticancer activity of cryptotanshinone on acute lymphoblastic leukemia cells.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Ching-Fen Wu
Sabine M Klauck
Thomas Efferth

Maneno muhimu

Kikemikali

Cryptotanshinone, a well-known diterpene quinone from a widely used traditional Chinese herb named Salvia miltiorrhiza, has been reported for its therapeutical potentials on diverse activities. In this study, pharmacological effects of cryptotanshinone on acute lymphoblastic leukemia cells were investigated. IC50 values of 5.0 and 4.8 were obtained in CEM/ADR5000 and CCRF-CEM. Microarray-based mRNA expression revealed that cryptotanshinone regulated genes associated with cell cycle, DNA damage, reactive oxygen species (ROS), NFκB signaling and cellular movement. The involvement of these pathways in the mode of action of cryptotanshinone was subsequently validated by additional independent in vitro studies. Cryptotanshinone stimulated ROS generation and induced DNA damage. It arrested cells in G2/M phase of the cell cycle and induced apoptosis as measured by annexin V-FITC-conjugating fluorescence. The induction of the intrinsic apoptotic pathway by cryptotanshinone was proved by loss of mitochondrial membrane potential and increased cleavage of caspase 3/7, caspase 9 and poly ADP ribose polymerase (PARP). DNA-binding motif analysis of the microarray-retrieved deregulated genes in the promoter region revealed NFκB as potential transcription factor involved in cryptotanshinone's mode of action. Molecular docking and Western blotting provided supportive evidence, suggesting that cryptotanshinone binds to IKK-β and inhibits the translocation of p65 from the cytosol to the nucleus. In addition, cryptotanshinone inhibited cellular movement as shown by a fibronectin-based cellular adhesion assay, indicating that this compound exerts anti-invasive features. In conclusion, cryptotanshinone exerts profound cytotoxicity, which is caused by multispecific modes of actions, including G2/M arrest, apoptosis and inhibition of cellular movement. The inhibitory activities of this compound may be explained by inhibition of NFκB, which orchestrates all these mechanisms.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge