Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neurochemistry 2010-Jan

Changes in cholesterol biosynthetic and transport pathways after excitotoxicity.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Ji-Hyun Kim
Jinatta Jittiwat
Wei-Yi Ong
Akhlaq A Farooqui
Andrew M Jenner

Maneno muhimu

Kikemikali

The present study was carried out to elucidate changes in the gene expression and activity of cholesterol biosynthetic enzymes and transporters in the rat hippocampus after kainate excitotoxicity. Significantly increased cholesterol level was detected in the degenerating hippocampus, reaching double normal levels at 1 week after kainate injury. RT-PCR analyses of hippocampal homogenates showed significantly decreased mRNA expression of the transcription factor controlling cholesterol biosynthesis SREBP-2, and the rate-controlling enzyme HMG-CoA (3-hydroxy-3-methyl-glutaryl-CoA) reductase at all time points after kainate injection; and decreased lanosterol synthase and CYP51 at 1 and 2 weeks post-kainate injection respectively. GC-MS analyses showed a significant increase in cholesterol biosynthetic precursors lanosterol, desmosterol and 7-dehydrocholesterol at 1 day after kainate injection presumably reflecting biosysnthesis in injured neurons, and significant decreases in precursors at 1 and 2 weeks post-kainate injection, at time of gliosis in the degenerating hippocampus. Levels of cholesterol autooxidation including 7 ketocholesterol and cholesterol epoxides were elevated in the kainate lesioned hippocampus. Furthermore, loss of expression of the cholesterol transporter, ABCA1 was detected in neurons, but increased expression in astrocytes was detected after kainate lesions. The results suggest that increased cholesterol biosynthesis and loss of ABCA1 expression in injured neurons might result in increase in cholesterol in the degenerating hippocampus. The increased cholesterol might predispose to increased formation of cholesterol oxidation products which have been shown to be toxic to neurons.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge