Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Physical Chemistry B 2012-Jun

Dependence of pyranose ring puckering on anomeric configuration: methyl idopyranosides.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
Benedict M Sattelle
Bidisha Bose-Basu
Matthew Tessier
Robert J Woods
Anthony S Serianni
Andrew Almond

Maneno muhimu

Kikemikali

In the aldohexopyranose idose, the unique presence of three axial ring hydroxyl groups causes considerable conformational flexibility, rendering it challenging to study experimentally and an excellent model for rationalizing the relationship between puckering and anomeric configuration. Puckering in methyl α- and β-L-idopyranosides was predicted from kinetically rigorous 10 μs simulations using GLYCAM11 and three explicit water models (TIP3P, TIP4P, and TIP4P-EW). In each case, computed pyranose ring three-bond (vicinal) (1)H-(1)H spin couplings ((3)J(H,H)) trended with NMR measurements. These values, calculated puckering exchange rates and free energies, were independent of the water model. The α- and β-anomers were (1)C(4) chairs for 85 and >99% of their respective trajectories and underwent (1)C(4)→(4)C(1) exchange at rates of 20 μs(-1) and 1 μs(-1). Computed α-anomer (1)C(4)↔(4)C(1) puckering rates depended on the exocyclic C6 substituent, comparing hydroxymethyl with carboxyl from previous work. The slower kinetics and restricted pseudorotational profile of the β-anomer were caused by water occupying a cavity bounded by the anomeric 1-O-methyl and the C6 hydroxymethyl groups. This finding rationalizes the different methyl α- and β-L-idopyranoside (3)J(H,H) values. Identifying a relationship between idopyranose anomeric configuration, microsecond puckering, and water structure facilitates engineering of biologically and commercially important derivatives and underpins deciphering presently elusive structure-function relationships in the glycome.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge