Swahili
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Animal Science 2014-Feb

Development of an antioxidant system after early weaning in piglets.

Watumiaji waliosajiliwa tu ndio wanaweza kutafsiri nakala
Ingia / Ingia
Kiungo kimehifadhiwa kwenye clipboard
J Yin
M M Wu
H Xiao
W K Ren
J L Duan
G Yang
T J Li
Y L Yin

Maneno muhimu

Kikemikali

The objective of this experiment was to investigate oxidative injury and the development of an antioxidant system after early weaning in piglets. A total of 40 piglets (Landrace× Large White, weaned at 14 d after birth) were randomly slaughtered 0 (w0d), 1 (w1d), 3 (w3d), 5 (w5d), or 7 d (w7d; n = 8) after weaning. Concentrations of malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), and protein carbonyl and the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase were measured in plasma. Gene expressions of antioxidant enzymes were determined by quantitative reverse transcription PCR analysis. The mediation of transcription factor 65 (p65) and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways by oxidative stress was determined by Western blot analysis. Results showed that the plasma MDA level was significantly higher at 3 d (P < 0.05) and that the protein carbonyl level increased at 1, 3, and 5 d (P < 0.05) compared with w0d. In addition, early weaning suppressed the plasma activity of SOD at 1 d (P < 0.05) and reduced the GSH-Px activity at 3 d (P < 0.05). The expression results in the jejunum indicate that the genes related to antioxidant enzymes were downregulated (P < 0.05) at 3 and 5 d after weaning. Uncoupling protein 2 (Ucp2), which is considered to be a feedback regulation on reactive oxygen species generation, tended to decrease in the ileum (P < 0.05) after weaning. Tumor protein 53 (p53), which regulates reactive oxygen species generation, was enhanced (P < 0.05) in the jejunum after weaning. Meanwhile, early weaning suppressed p65 (at 3, 5, and 7 d; P < 0.05) and Nrf2 (at 5 and 7 d; P < 0.05) signals in the jejunum, which might feedback-regulate antioxidant gene expression and promote the development of the antioxidant system. Therefore, we speculate that weaning disrupted oxidative balance and caused oxidative injury in piglets, and this imbalance can recover with the development of an antioxidant system via feedback regulation.

Jiunge na ukurasa
wetu wa facebook

Hifadhidata kamili ya mimea ya dawa inayoungwa mkono na sayansi

  • Inafanya kazi katika lugha 55
  • Uponyaji wa mitishamba unaungwa mkono na sayansi
  • Kutambua mimea kwa picha
  • Ramani ya GPS inayoshirikiana
  • Soma machapisho ya kisayansi yanayohusiana na utafutaji wako
  • Tafuta mimea ya dawa na athari zao
  • Panga maslahi yako na fanya tarehe ya utafiti wa habari, majaribio ya kliniki na ruhusu

Andika dalili au ugonjwa na usome juu ya mimea ambayo inaweza kusaidia, chapa mimea na uone magonjwa na dalili ambazo hutumiwa dhidi yake.
* Habari zote zinategemea utafiti wa kisayansi uliochapishwa

Google Play badgeApp Store badge